diff --git a/dmu1/dmu1_ml_Bootes/1_Reformatting.ipynb b/dmu1/dmu1_ml_Bootes/1_Reformatting.ipynb index 3f51fecd..ba5b47c5 100644 --- a/dmu1/dmu1_ml_Bootes/1_Reformatting.ipynb +++ b/dmu1/dmu1_ml_Bootes/1_Reformatting.ipynb @@ -81,34 +81,16 @@ " \"objID\": \"ps1_id\",\n", " \"raMean\": \"ps1_ra\",\n", " \"decMean\": \"ps1_dec\",\n", - " \"gApMag\": \"m_ap_gpc1_g\",\n", - " \"gApMagErr\": \"merr_ap_gpc1_g\",\n", - " \"gKronMag\": \"m_gpc1_g\",\n", - " \"gKronMagErr\": \"merr_gpc1_g\",\n", - " \"rApMag\": \"m_ap_gpc1_r\",\n", - " \"rApMagErr\": \"merr_ap_gpc1_r\",\n", - " \"rKronMag\": \"m_gpc1_r\",\n", - " \"rKronMagErr\": \"merr_gpc1_r\",\n", - " \"iApMag\": \"m_ap_gpc1_i\",\n", - " \"iApMagErr\": \"merr_ap_gpc1_i\",\n", - " \"iKronMag\": \"m_gpc1_i\",\n", - " \"iKronMagErr\": \"merr_gpc1_i\",\n", - " \"zApMag\": \"m_ap_gpc1_z\",\n", - " \"zApMagErr\": \"merr_ap_gpc1_z\",\n", - " \"zKronMag\": \"m_gpc1_z\",\n", - " \"zKronMagErr\": \"merr_gpc1_z\",\n", - " \"yApMag\": \"m_ap_gpc1_y\",\n", - " \"yApMagErr\": \"merr_ap_gpc1_y\",\n", - " \"yKronMag\": \"m_gpc1_y\",\n", - " \"yKronMagErr\": \"merr_gpc1_y\"\n", + "\n", " })\n", "\n", "\n", - "catalogue = Table.read(\"../../dmu0/dmu0_PanSTARRS1-3SS/data/PanSTARRS1-3SS_XMM-LSS.fits\")[list(imported_columns)]\n", - "for column in imported_columns:\n", - " catalogue[column].name = imported_columns[column]\n", + "i_catalogue = Table.read(\"../../dmu0/dmu0_Bootes_Brown/data/Bootes_merged_Icorr_2014a_all_ap2_07112017.fits\") #[list(imported_columns)]\n", + "irac_i2_catalogue = Table.read(\"../../dmu0/dmu0_Bootes_Brown/data/bootes_merged_ch2corr_2014a_all_ap2_07112017.fits\")\n", + "#for column in imported_columns:\n", + "# catalogue[column].name = imported_columns[column]\n", "\n", - "epoch = 2012\n", + "#epoch = 2012\n", "\n", "# Clean table metadata\n", "catalogue.meta = None" diff --git a/dmu1/dmu1_ml_XMM-LSS/2_Merging_low_memory.ipynb b/dmu1/dmu1_ml_XMM-LSS/2_Merging_low_memory.ipynb new file mode 100644 index 00000000..dd4dc7cd --- /dev/null +++ b/dmu1/dmu1_ml_XMM-LSS/2_Merging_low_memory.ipynb @@ -0,0 +1,3004 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# XMM-LSS master catalogue\n", + "\n", + "This notebook presents the merge of the various pristine catalogues to produce the HELP master catalogue on XMM-LSS." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This notebook was run with herschelhelp_internal version: \n", + "04829ed (Thu Nov 2 16:57:19 2017 +0000) [with local modifications]\n" + ] + } + ], + "source": [ + "from herschelhelp_internal import git_version\n", + "print(\"This notebook was run with herschelhelp_internal version: \\n{}\".format(git_version()))" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/rs548/anaconda/envs/herschelhelp_internal/lib/python3.6/site-packages/seaborn/apionly.py:6: UserWarning: As seaborn no longer sets a default style on import, the seaborn.apionly module is deprecated. It will be removed in a future version.\n", + " warnings.warn(msg, UserWarning)\n" + ] + } + ], + "source": [ + "%matplotlib inline\n", + "#%config InlineBackend.figure_format = 'svg'\n", + "\n", + "import matplotlib.pyplot as plt\n", + "plt.rc('figure', figsize=(10, 6))\n", + "\n", + "import os\n", + "import time\n", + "\n", + "from astropy import units as u\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.table import Column, Table\n", + "import numpy as np\n", + "from pymoc import MOC\n", + "\n", + "from herschelhelp_internal.masterlist import merge_catalogues, nb_merge_dist_plot, specz_merge\n", + "from herschelhelp_internal.utils import coords_to_hpidx, ebv, gen_help_id, inMoc" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "TMP_DIR = os.environ.get('TMP_DIR', \"./data_tmp\")\n", + "OUT_DIR = os.environ.get('OUT_DIR', \"./data\")\n", + "SUFFIX = os.environ.get('SUFFIX', time.strftime(\"_%Y%m%d\"))\n", + "\n", + "try:\n", + " os.makedirs(OUT_DIR)\n", + "except FileExistsError:\n", + " pass" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## I - Reading the prepared pristine catalogues" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "candels = Table.read(\"{}/CANDELS.fits\".format(TMP_DIR))[\"candels_id\",\"candels_ra\",\"candels_dec\",\"candels_stellarity\"] # 1.1\n", + "cfht_wirds = Table.read(\"{}/CFHT-WIRDS.fits\".format(TMP_DIR))[\"wirds_intid\",\"wirds_ra\",\"wirds_dec\",\"wirds_stellarity\", 'flag_merged'] # 1.3\n", + "cfhtls_wide = Table.read(\"{}/CFHTLS-WIDE.fits\".format(TMP_DIR))[\"cfhtls-wide_id\",\"cfhtls-wide_ra\",\"cfhtls-wide_dec\",\"cfhtls-wide_stellarity\"] # 1.4a\n", + "cfhtls_deep = Table.read(\"{}/CFHTLS-DEEP.fits\".format(TMP_DIR))[\"cfhtls-deep_id\",\"cfhtls-deep_ra\",\"cfhtls-deep_dec\",\"cfhtls-deep_stellarity\"] # 1.4b\n", + "#We no longer use CFHTLenS as it is the same raw data set as CFHTLS-WIDE\n", + "# cfhtlens = Table.read(\"{}/CFHTLENS.fits\".format(TMP_DIR)) # 1.5\n", + "decals = Table.read(\"{}/DECaLS.fits\".format(TMP_DIR))[\"decals_id\",\"decals_ra\",\"decals_dec\"] # 1.6\n", + "servs = Table.read(\"{}/SERVS.fits\".format(TMP_DIR))[\"servs_intid\",\"servs_ra\",\"servs_dec\"] # 1.8\n", + "swire = Table.read(\"{}/SWIRE.fits\".format(TMP_DIR))[\"swire_intid\",\"swire_ra\",\"swire_dec\"] # 1.7\n", + "hsc_wide = Table.read(\"{}/HSC-WIDE.fits\".format(TMP_DIR))[\"hsc-wide_id\",\"hsc-wide_ra\",\"hsc-wide_dec\", \"hsc-wide_stellarity\"] # 1.9a\n", + "hsc_deep = Table.read(\"{}/HSC-DEEP.fits\".format(TMP_DIR))[\"hsc-deep_id\",\"hsc-deep_ra\",\"hsc-deep_dec\", \"hsc-deep_stellarity\"] # 1.9b\n", + "hsc_udeep = Table.read(\"{}/HSC-UDEEP.fits\".format(TMP_DIR))[\"hsc-udeep_id\",\"hsc-udeep_ra\",\"hsc-udeep_dec\", \"hsc-udeep_stellarity\"] # 1.9c\n", + "ps1 = Table.read(\"{}/PS1.fits\".format(TMP_DIR))[\"ps1_id\",\"ps1_ra\",\"ps1_dec\"] # 1.10\n", + "sxds = Table.read(\"{}/SXDS.fits\".format(TMP_DIR))[\"sxds_b_id\", \"sxds_ra\", \"sxds_dec\",'flag_merged'] # 1.11\n", + "sparcs = Table.read(\"{}/SpARCS.fits\".format(TMP_DIR))['sparcs_intid', 'sparcs_ra', 'sparcs_dec', 'sparcs_stellarity'] # 1.12\n", + "dxs = Table.read(\"{}/UKIDSS-DXS.fits\".format(TMP_DIR))['dxs_id','dxs_ra','dxs_dec', 'dxs_stellarity'] # 1.13\n", + "uds = Table.read(\"{}/UKIDSS-UDS.fits\".format(TMP_DIR))['uds_id','uds_ra','uds_dec','uds_stellarity'] # 1.14\n", + "vipers = Table.read(\"{}/VIPERS.fits\".format(TMP_DIR))[\"vipers_id\",\"vipers_ra\",\"vipers_dec\"] # 1.15\n", + "vhs = Table.read(\"{}/VISTA-VHS.fits\".format(TMP_DIR))[\"vhs_id\",\"vhs_ra\",\"vhs_dec\",\"vhs_stellarity\"] # 1.16\n", + "video = Table.read(\"{}/VISTA-VIDEO.fits\".format(TMP_DIR))['video_id','video_ra','video_dec','video_stellarity','video_flag_gaia'] # 1.17\n", + "viking = Table.read(\"{}/VISTA-VIKING.fits\".format(TMP_DIR))[\"viking_id\",\"viking_ra\",\"viking_dec\",\"viking_stellarity\",\"viking_flag_gaia\"] # 1.18" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## II - Merging tables\n", + "\n", + "We first merge the optical catalogues and then add the infrared ones. We start with PanSTARRS because it coevrs the whole field.\n", + "\n", + "At every step, we look at the distribution of the distances to the nearest source in the merged catalogue to determine the best crossmatching radius." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add PanSTARRS" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "master_catalogue = ps1\n", + "master_catalogue['ps1_ra'].name = 'ra'\n", + "master_catalogue['ps1_dec'].name = 'dec'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### CANDELS" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HELP Warning: There weren't any cross matches. The two surveys probably don't overlap.\n" + ] + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(candels['candels_ra'], candels['candels_dec'])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, candels, \"candels_ra\", \"candels_dec\", radius=0.8*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add CFHT-WIRDS" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HELP Warning: There weren't any cross matches. The two surveys probably don't overlap.\n" + ] + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(cfht_wirds['wirds_ra'], cfht_wirds['wirds_dec'])\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because CFHT-WIRDS is made by merging the different bands it has a flag_merged columns which must be removed. We throw this information away because one can get back to the original object using the combined id as described in the notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "cfht_wirds['flag_merged'].name = 'flag_merged_wirds'" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: MergeConflictWarning: Cannot merge meta key 'EXTNAME' types and , choosing EXTNAME='/Users/rs548/GitHub/dmu_products/dmu1/dmu1_ml_XMM-LSS/data_tmp/CF...' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-26T17:44:50' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'EXTNAME' types and , choosing EXTNAME='/Users/rs548/GitHub/dmu_products/dmu1/dmu1_ml_XMM-LSS/data_tmp/CF...' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-26T17:44:50' [astropy.utils.metadata]\n" + ] + } + ], + "source": [ + "# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, cfht_wirds, \"wirds_ra\", \"wirds_dec\", radius=0.8*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add CFHTLS" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd0XdWB7/HvVu/N6s2Se2/IBds0gzE2CS30FkIIQxIS\nJqRPZr2ZvCkvmSQkMCEYQiCQUEJCIBSDAeOCMe69SO5WsWRVS7J62e8PXRPhuMj2kc4tv89aXkj3\nHun+fC2ufnfvffYx1lpERERE5PwFuR1ARERExF+oWImIiIg4RMVKRERExCEqViIiIiIOUbESERER\ncYiKlYiIiIhDVKxEREREHKJiJSIiIuIQFSsRERERh6hYiYiIiDgkxK0HTk5Otnl5eW49vIiIiEif\nbdiwodpam3Km41wrVnl5eaxfv96thxcRERHpM2PMob4cp6lAEREREYeoWImIiIg4RMVKRERExCEq\nViIiIiIOUbESERERcYiKlYiIiIhDVKxEREREHKJiJSIiIuIQFSsRERERh6hYiYiIiDhExUpERETE\nISpWIiIiIg5RsRIRERFxSIjbAcS7vLim2NXHv316rquPLyIicj40YiUiIiLiEBUrEREREYeoWImI\niIg4RMVKRERExCEqViIiIiIOUbESERERcYiKlYiIiIhDVKxEREREHKJiJSIiIuIQFSsRERERh6hY\niYiIiDhExUpERETEISpWIiIiIg5RsRIRERFxiIqViIiIiENUrEREREQcomIlIiIi4hAVKxERERGH\nqFiJiIiIOETFSkRERMQhKlYiIiIiDlGxEhEREXGIipWIiIiIQ1SsRERERByiYiUiIiLiEBUrERER\nEYeoWImIiIg4RMVKRERExCEqViIiIiIOUbESERERcYiKlYiIiIhDVKxEREREHKJiJSIiIuKQPhUr\nY8xVxpgiY8xeY8wPTnL/pcaYemPMZs+f/+N8VBERERHvFnKmA4wxwcDjwFygFFhnjHnDWrvzhEM/\nstZ+rh8yioiIiPiEvoxYTQP2Wmv3W2vbgZeBa/s3loiIiIjv6UuxygJKen1e6rntRDONMVuNMe8Y\nY8Y6kk5ERETEh5xxKrCPNgK51tpjxpgFwOvA8BMPMsbcD9wPkJub69BDi4iIiHiHvoxYlQE5vT7P\n9tz2KWttg7X2mOfjRUCoMSb5xG9krX3KWltgrS1ISUk5j9giIiIi3qcvxWodMNwYk2+MCQNuBd7o\nfYAxJt0YYzwfT/N83xqnw4qIiIh4szNOBVprO40xDwKLgWDgGWvtDmPMA577FwI3Al81xnQCLcCt\n1lrbj7lFREREvE6f1lh5pvcWnXDbwl4f/xr4tbPRRERERHyLdl4XERERcYiKlYiIiIhDVKxERERE\nHKJiJSIiIuIQFSsRERERh6hYiYiIiDhExUpERETEISpWIiIiIg5RsRIRERFxiIqViIiIiENUrERE\nREQcomIlIiIi4hAVKxERERGHqFiJiIiIOETFSkRERMQhKlYiIiIiDlGxEhEREXGIipWIiIiIQ1Ss\nRERERByiYiUiIiLiEBUrEREREYeoWImIiIg4RMVKRERExCEqViIiIiIOUbESERERcYiKlYiIiIhD\nVKxEREREHKJiJSIiIuIQFSsRERERh6hYiYiIiDhExUpERETEISpWIiIiIg5RsRIRERFxiIqViIiI\niENUrEREREQcomIlIiIi4hAVKxERERGHqFiJiIiIOETFSkRERMQhKlYiIiIiDlGxEhEREXGIipWI\niIiIQ1SsRERERByiYiUiIiLiEBUrEREREYeoWImIiIg4pE/FyhhzlTGmyBiz1xjzg9McN9UY02mM\nudG5iCIiIiK+4YzFyhgTDDwOzAfGALcZY8ac4rifAu85HVJERETEF/RlxGoasNdau99a2w68DFx7\nkuO+AbwKVDqYT0RERMRn9KVYZQElvT4v9dz2KWNMFnA98IRz0URERER8i1OL138FfN9a2326g4wx\n9xtj1htj1ldVVTn00CIiIiLeIaQPx5QBOb0+z/bc1lsB8LIxBiAZWGCM6bTWvt77IGvtU8BTAAUF\nBfZcQ4uIiIh4o74Uq3XAcGNMPj2F6lbg9t4HWGvzj39sjPk98NaJpUpERETE352xWFlrO40xDwKL\ngWDgGWvtDmPMA577F/ZzRhERERGf0JcRK6y1i4BFJ9x20kJlrb3n/GOJiIiI+B7tvC4iIiLiEBUr\nEREREYeoWImIiIg4RMVKRERExCEqViIiIiIOUbESERERcYiKlYiIiIhDVKxEREREHKJiJSIiIuIQ\nFSsRERERh6hYiYiIiDhExUpERETEISpWIiIiIg5RsRIRERFxiIqViIiIiENUrEREREQcomIlIiIi\n4hAVKxERERGHqFiJiIiIOETFSkRERMQhKlYiIiIiDlGxEhEREXGIipWIiIiIQ1SsRERERByiYiUi\nIiLiEBUrEREREYeoWImIiIg4RMVKRERExCEqViIiIiIOUbESERERcYiKlYiIiIhDVKxEREREHKJi\nJSIiIuIQFSsRERERh6hYiYiIiDhExUpERETEISpWIiIiIg5RsRIRERFxSIjbAURERLzJi2uK3Y7A\n7dNz3Y4g50gjViIiIiIOUbESERERcYiKlYiIiIhDVKxEREREHKJiJSIiIuIQFSsRERERh/SpWBlj\nrjLGFBlj9hpjfnCS+681xmw1xmw2xqw3xsx2PqqIiIiIdzvjPlbGmGDgcWAuUAqsM8a8Ya3d2euw\nJcAb1lprjJkAvAKM6o/AIiIiIt6qLyNW04C91tr91tp24GXg2t4HWGuPWWut59NowCIiIiISYPpS\nrLKAkl6fl3pu+wxjzPXGmELgbeBeZ+KJiIiI+A7HFq9ba1+z1o4CrgP+42THGGPu96zBWl9VVeXU\nQ4uIiIh4hb4UqzIgp9fn2Z7bTspauwIYYoxJPsl9T1lrC6y1BSkpKWcdVkRERMSb9aVYrQOGG2Py\njTFhwK3AG70PMMYMM8YYz8dTgHCgxumwIiIiIt7sjGcFWms7jTEPAouBYOAZa+0OY8wDnvsXAl8A\n7jbGdAAtwC29FrOLiIiIBIQzFisAa+0iYNEJty3s9fFPgZ86G01ERETEt2jndRERERGHqFiJiIiI\nOETFSs5JR1c3Ncfa0FI6ERGRv+vTGisRgKrGNnYfaWRPZSMHqpvo6LLkJ0dz1dh0cpKi3I4nIiLi\nOhUr6ZOVe6pYtL0CgOSYMAoGJxEXEcLKfTU8sXwfYzPjuHJMOimx4S4nFRERcY+KlZzRxkN1LNpe\nwdjMOBaMyyAxOuzT+2YMGcTKvdV8tLeawvI93DMrj6EpMS6mFRERcY/WWMlp7Spv4K+bShmWEsMt\nBTmfKVUA4aHBXD46jW/PHUFSdBgvryuhvqXDpbQiIiLuUrGSUzpQ3cRLa4vJTIjkjhm5hASf+scl\nNiKU26fn0tHZzctri+nq1qJ2EREJPJoKlJOqPtbGH1YfJDEqjC9emEd4SPAZvyYtLoLrJ2fxp/Ul\nLN5RwYLxGQOQVET8zYtrit2OIHLONGIlJ/Xu9gqshS/NyiM6vO/9e2JOAjOGJLFybzXby+r7MaGI\niIj3UbGSf3Copomd5Q1cPCKFhKiwM3/BCRaMyyA7MZJXN5ZqvZWIiAQUFSv5DGst726vIDYihFlD\nk8/pe4QEB3Hr1Fw6uyxLiyodTigiIuK9tMZKPmNXeSOHapu5blIWYSHn3ruTosMoyEtk/cE6Lhme\n8g9nE4qI9LeubkvNsTaONLbR0t5FcJD59E9CZCiZCZEEBxm3Y4qfUbGST3V2dbN4ZwXJMeFcMDjx\nvL/fpSNT2XCojg+LKvnClGwHEoqInFpXt+VAdRPby+oprm2m6ljbac9QDgsJIm9QFEOSYxiTGUdy\njDY4lvOnYiWf+suGUqoa27hjeq4j7+LiI0OZlp/E6v01XDoihUF60RIRh1nbU6Y2lRxlV3kDze1d\nhAUHkZccxYi0WNLiwkmLiyA6PITubktXt6Wz21LZ2Mr+6iYOVDXx7pEKFu+oYHJuAnNGpZGkEXY5\nDypWAkBLexe//GA3uUlRjMmIc+z7XjIihXUHa/mwsJKbCnIc+74iEti6ui3byo6yck81h+tbCQ8J\nYnRGHOMy4xieFkvoafbdA0iPj2BCdgIA9S0dfLy3mtX7a9hccpSCvCTmjEwlLjJ0IP4q4mdUrASA\nv2ws5UhDG1+5aAjGOLfmIDYilBn5PZe9uWRkCqmxEY59bxEJPJ1d3aw5UMtHe6poaO0kJTac6ydn\nMSkn4Yxl6lTiI0NZMD6DWcOSWVZUyfqDdWwvq+e2abm6RJecNZ0VKFhreXFNMWMy4sgbFOX4979o\nRAqhwUEs2aUzBEXk3HRby8biOh55fzdvbytnUEw4X7xwMA9dPpypeUnnXKp6i48M5dpJWXzz8uFE\nh4fw7McH+HhvNdbqShLSdxqxEraU1rOrvIH/vG6co6NVx8WEhzBz6CCW7a7i8sZWjVqJyFnZfaSR\nd7dXUNHQSlZCJDdMyWZYav+NJKXEhvPVS4by5w2lvL2tnPL6Fq6dlOVIeRP/p58S4cU1h4gKC+ba\nSZn99hgzhyUTbAzrDtT222OIiH+pa2rnD6sP8ftVB2nv6ubWqTl89dKh/VqqjosIDeaO6blcPiqV\njcVH+f2qg3R0dff744rv04hVgGto7eDNLeVcOymT2Ij+W6gZEx7CmMw4NhYf5cqx6XrnJyKn1NHV\nzYo9VSwvqsIYmDcmjVnDkk97Ifj+EGQMl49OY1BMGK+sL+WV9SXcNi2XoH4Y2Rf/oWIV4P62qYyW\nji5um5bb7481LT+JbWX1bC+rZ3Lu+e+TJSL+55N9NTy2ZA81Te2Mz4pn/rj0c7q0lpMm5STS1NbF\n29vKeWvrYT4/IbNflk2If1CxCmDWWl5YU8zYzDgmZMf3++MNSY4mOSaMNQdqVaxE5DPqWzr4yTu7\neGltCUnRYXxpVh7DU2PdjvWpWcOSaWjt4KM91cRFhHLpyFS3I4mXUrEKYJtLjlJY0ch/Xd8/i9ZP\nZIxhal4S73gWoabHaRG7iMC72yv4P3/bTvWxNu6/eAiZ8ZHndUmt/jJvbDqNrZ28t/MIcRGhTHHg\nChXif7zvJ1cGzEtri4kKC+aaif23aP1EU3ITCQkyrNUidpGAV9nYylf/uIEH/riBpOgwXv/6LP5l\nwWivLFXQs+bqhilZDE2J5vXNZVQ2tLodSbyQd/70Sr8bqEXrJ4oOD2FcVjybiuto79QZNiKByFrL\nK+tKuOIXy1lSWMl3543kzW/M/nQndG8WEhTETQU5hIUE8cqGEjq79Tomn6ViFaDe2VZOS0cXt07t\n/0XrJ5qal0RbZzdbS48O+GOLiLtKapu583dr+N6rWxmVHsc7D13E1y8b5lNnCsdFhHL95CwOH23V\nxsfyD7TGKkC9va2C3KSoAVm0fqK8QVGkxoaz9mAtBXlJA/74IjLwurotz606yM8WFxEcZPjP68Zx\n+7Rcghy44LsbxmbGUzA4kRW7qxiRFkt+crTbkcRL+M5bBHFMXVM7H++t5uoJGa6cMmyMYVp+EqV1\nLZTXtwz444vIwNpb2cjNT37C/31rJzOGJPHety7mzhmDfbZUHXf1hAwSo8P484YSWju63I4jXkLF\nKgC9t7OCrm7L1eMzXMswMTuBIANbSupdyyAi/aujq5vHl+5lwaMr2Vd1jF/eMpFn7plKZkKk29Ec\nER4SzM0XZFPf3MHb28rdjiNeQsUqAB2fBhybGedahujwEIanxrK19CjdusCpiN/ZXlbPdY9/zM8W\nFzF3TBrvf+sSrp+c7Xcba+YOiuai4clsOFRHSW2z23HEC6hYBRi3pwF7m5gTz9GWDopr9GIk4i9a\nO7r42eJCrn38Yyob21h45xQev2MKKbHhbkfrN5eNTCU2PIS3th7WG0VRsQo03jANeNzojDhCgw2b\ndXagiF/YcKiOqx/7iMeX7uP6yVl88K1LuGqc+681/S08NJh5Y9MpqWthc4lezwKdilWA8YZpwOPC\nQ4IZnRHHttJ67QUj4sOa2zv58Zs7uHHhKlo7unnu3mn8/KaJxEcN3B55bpuUm0B2YiSLd1TQpoXs\nAU3FKoB40zTgcZOyE2jp6GJv5TG3o4jIOfiw8AhzH1nBsx8f5K4Zg1n8rYu5ZESK27EGXJAxfH5C\nJo2tnSzbXeV2HHGR9rEKIN40DXjcsLQYIkOD2VJylFHp7o+iiQi8uKb4jMfUt3Tw1tbD7DjcQEps\nOF+5aAj5ydG8sfnwACT0TjlJUUzOSWDl3moKBicyKMZ/15XJqalYBRBvmgY8LiQoiPFZ8Wwq0SVu\nRHxBt7Ws3l/D+zuP0NVtuXJMGrOHJxMSpAkQgHnj0tlR3sC7Oyq4Y/pgt+OIC1SsAsTxacD7Lx7i\nNdOAx03MSWDtwVp2lje4HUVETqOsroXXN5dRdrSF4akxXDMxU6MyJ4iLCGX2sGQ+LKzk8NEWv9mz\nS/pObzECxJLCSrq6LQu88AydwYOiiI8MZYvOphHxSq0dXby59TC/WbaXhpYObp2awz0z81SqTmHW\n0GQiQoP4sFDXEQxEGrEKEEt2HSEtLpxxWd4zDXhckDFMzI5n5d5qapvaSYoOczuSiNAz7be55CiL\nt1dwrK2TaflJXDkmnciwYLejebXIsGBmDU1miUatApJGrAJAe2c3K3ZXMWdUmtdNAx43ITuBbgvv\n7ahwO4qIACW1zTy5fB9/2VBKfFQoD1wylGsnZalU9dFMjVoFLI1YBYA1B2poau/iitGpbkc5pYz4\nCJKiw3h7Wzm3Tst1O45IwKpsbOUvG0rZWFxHbHgIN07JZlJuAkFe+qbMW2nUKnBpxCoALNlVSURo\nELOGJbsd5ZSMMYzPimfVvhpqm9rdjiMScNo7u3lqxT7m/Hw5W0qOcvHwZB6eO4IpgxNVqs6RRq0C\nk0as/Jy1liWFRzyLKb17CH9cVjzLd1fx3o4KjVqJDBBrLUt2VfLfi3axv7qJy0elMjEngWQtTD9v\nkWHBzBqWzJJdGrUKJBqx8nN7Ko9RUtvC5aPT3I5yRpnxEeQmRfH2tnK3o4gEhA2Harn5yU+47/n1\nADz7pan87p6pKlUOmjmkZ9RqaZFGrQKFRqz83JJdPf8zzxnlveurjjPGsGB8Br/9aD91Te0k6uxA\nkX6x50gj/7O4iPd3HiElNpz/un4cNxfkEBqs99pOiwwLZsaQQSwvqqLmWJu2qAgAffq/yBhzlTGm\nyBiz1xjzg5Pcf4cxZqsxZpsxZpUxZqLzUeVcLNl1hHFZcaTHR7gdpU8+NyGDrm7Lezt1dqCI0w4f\nbeF7f9nCvF+tYPW+Gr5z5QiWf/dS7pg+WKWqH104ZBBBQYaP91W7HUUGwBlHrIwxwcDjwFygFFhn\njHnDWruz12EHgEustXXGmPnAU8D0/ggsfVfb1M7G4jq+MWe421H6bGxmnGc6sIJbpmqdlYgTjja3\n88Syffx+1UGshS/Nyufrlw3TnnEDJDYilInZCWw4VMcVo9OICtNkkT/ry7/uNGCvtXY/gDHmZeBa\n4NNiZa1d1ev41UC2kyHl3CwrqqTbwuVevM3CiY5PBz6t6UCR81Z9rI2nPzrAHz45SHNHF9dPzuLh\nuSPIToxyO1rAmT0smY3Fdaw9UMulI33nNVnOXl+KVRZQ0uvzUk4/GvVl4J3zCSXOWLKrktTYcMZl\nxrsd5axcPT6Dhcv38d5OjVqJnIvy+haeXL6fl9cV09bZzecmZPLgZcMYmR7rdrSAlR4fwfDUGD7Z\nV8PsYcmEaOrVbzk6HmmMuYyeYjX7FPffD9wPkJurX5j96fhu61dPyCAoyLf2oBmXFUdOUqSmA0XO\nUnFNM08s38dfNpRgLVw3OYuvXjqUoSkxbkcTekatnl11kK2l9UwZnOh2HOknfSlWZUBOr8+zPbd9\nhjFmAvA0MN9aW3Oyb2StfYqe9VcUFBTYs04rfbb+YC2NbZ0+cTbgiY5PB/7uowMcbW4nIUrTgSKn\ns/tIIwuX7+Nvmw8TbAy3TM3hny4eSk6Spvy8ybDUGNLjIli5t5rJuQlee4kxOT99KVbrgOHGmHx6\nCtWtwO29DzDG5AJ/Be6y1u52PKWctaVFlYQFBzF7uPfutn46V4/P4Mnl+3lvxxFunppz5i8QCTBd\n3ZYPdh3huVUHWbWvhojQIO6Zmcf9Fw8hLc43zgIONMYYZg1L5tWNpeytOsbwVE3N+qMzFitrbacx\n5kFgMRAMPGOt3WGMecBz/0Lg/wCDgN94Gnintbag/2LLmSwrqmJafpLPnn0yPiue7MRI3t5WrmIl\n0svR5nb+tK6E5z85RNnRFjLjI/juvJHcNi1XZ/n5gInZ8by3o4KP91arWPmpPv3WtdYuAhadcNvC\nXh/fB9znbDQ5V2VHW9hTeYxbfLiQGGO4enwGv1up6UARgF3lDTy36iCvby6jtaOb6flJ/OvVo5k7\nJk0LoX1ISHAQ0/KT+LCwUhuG+infHM6Q01rmuXTCpSNTXE5yfq6ekMGTK/bz3s4j3FzguyVR5Gy9\nuKYYgNaOLraV1rOhuI7i2mZCgw2TchKYMWQQGfGR1DV38Mr6UpfTytmampfE0qJK1h6oZf74DLfj\niMNUrPzQsqIqshIiff5MoOPTgYu2latYScDo6rbsqWxk46E6dhxuoLPbkhIbzvxx6VwwONFnp/fl\n7+IiQxmTGc/6Q3VcMSZNu977Gf0f6mfaO7tZtbea6yZn+fwZJ72nA+ubO4iPCnU7kki/2Vd1jFc3\nlPLXjWVUNLQSERrEBYMTmZKbSHZipM///yyfNSM/ie1l9WwtrecCbb3gV1Ss/Mz6g7U0tXf5zc6+\nC8b3TAcu3lmhUSvxO2VHW1i0tZy3th5mS2k9QQYuGZHCZaNSGZUeq5EMP5afHE1qbDhrDtSoWPkZ\nFSs/s2x3FWHBQcwcOsjtKI6YkK3pQPEvFfWtLNrWU6Y2Fh8Feqa9fzh/FNdPziI1LuLTNVbiv4wx\nTB8yiDe3HKa0rlmXGfIjKlZ+ZllRJVPzE4kO949/2uObhT77saYDxXdVNrbyzrYK3t5azrpDtVgL\nozPi+O68kVw9PoO85Gi3I4oLJucksHhHBav313LjBSpW/sI/fvsKAIePtrD7yDFuusC/RnYWjM/g\nqRX7eW9nBTdp1Er6mVOjRcfaOtlxuGcNzcHqJiyQGhvOnFGpjM+KJzW2ZxPPVftqWLXvpBerED8X\nERrM5JwENhyqY8G4dKL85A1xoNO/oh9ZVlQF+P42CyeamB1PVkLPdKCKlXizlvYudpbXs6W0nv1V\nx+i2kBwTxqUjU5mQHa8d0eUfTB8yiDUHatlQXMdFw/3rtTtQqVj5kaVFlWQlRDIs1be3WThRz3Rg\nOr9fdZD6lg7iIzUdKN6jvbObwooGtpbWU3Skka5uS2JUKBcNT2FCdjzpcRE6o09OKT0ugrxBUaw9\nUMvsYcn6WfEDKlZ+wp+2WTiZBeMz+O1HB3h/5xFuvCDb7TgS4I7vNbW1tJ6d5Q20d3YTGx7C9Pwk\nJmYnaHsEOSvT8pN4ZX0p+6ubfH7/QVGx8hv+ts3CiSblJHw6HahiJW6pbmxj/aFaNhQfpamtk8jQ\nYCZmxzMhO4H85GiCVKbkHIzNjCcytJx1B2tVrPyAipWf8LdtFk6k6UBxS0dXN9vL6ll/qI4D1U0E\nGRiVHscFgxMZnhZDSJD2mpLzExocxJTcBFYfqOVYWycxWsTu0/Sv5yf8bZuFk9F0oAyk8voW1h2s\nY3NJHa0d3SRFhzFvTBpTBicSG6FiL84qyEvi4301bNIidp/nv7+FA4i/brNwIk0HSn/r7OpmW1k9\nH++tpri2mZAgw9jMOKbmJZGnqT7pR2lxEQxOimLdwZ5F7OK7VKz8gL9us3AiYwzzx6Xz3CeaDhRn\nNbR28Ke1Jfx+1UHKjraQFB3G1eMzmJyboIsey4CZmp/EXzaUcqCmye0och70iuEHlvnpNgsns2BC\nBk+vPMAHO4/wBY1ayXmqPtbGsx8f4PlVh2hs62R6fhKXjUxlVEasRqdkwI3PiuetrYdZd6DW7Shy\nHlSsfFx7Zzcf763mWj/dZuFEk3MSyIyPYNG2chUrOWfl9S08uXw/L68rpq2zm/nj0vnqJcMYnx2v\n6/SJa0KDg5ick8jag7XUNbWTGB3mdiQ5BypWPm79Ic82CyP8exrwOGMM88dn8IdPDtHQ2kGcFhHL\nWahsaOU3y/bx4ppiuq3luslZPHDJ0IAY7RXfMDUviU/21/DqxlLuu2iI23HkHKhY+bjlRVWEBhtm\nBtBixwXjM/idZzrwhikatfI3/TFi1NTWyYrdVaw+UENXt2VybiJzRqaSGB3G2gO1rNXUi3iJ9PgI\ncpOieHldCV+enR8QMxH+RsXKxy0rqmJqXlJA7XsyOSeBjPgI3t5armIlp9XZ1c2qfTUs211JW0c3\nE3MSuHxUKoNiwt2OJnJKU/OSeHVjKesP1TE1L8ntOHKWAue3sR86fLSFoiON/MsFo9yOMqCCggwL\nPNOBOjtQTsZay7ayehbvqKCuuYMRaTHMH5ehiyCLTxifFc97Oyp4aU2xipUP0pbBPmz57uPbLPjn\nZWxO5/MTM2nv6uadbeVuRxEvU1zTxJMr9vPyuhLCQ4L50qw87pmZr1IlPiMsJIjrJmfx1rZyjja3\nux1HzpKKlQ9bVlRJZnwEwwNw4e3E7HiGpETz141lbkcRL1Hb1M5La4tZuGI/dU3t3DA5iwfnDGN4\naqzb0UTO2m3Tcmnv7Oa1TXqN8zUqVj6qZ5uFGi4ZmRqQixuNMXxhSjZrD9ZSXNPsdhxxUXtnN4t3\nVPDLD3ZTWNHAnFGpPHzlCArykrQXlfisMZlxTMxJ4KW1xVhr3Y4jZ0HFyketP9RzsU5/3239dK6b\nnIUx6B1dgLLWsr2snl9+sJvlu6uYkBXPw3NHcsXoNMJDgt2OJ3Lebp+Ww+4jx9hYXOd2FDkLKlY+\namlhJWHBQQF9TamshEguHDKIv24q1Tu6AFPV2Mazqw7y4tpiosKC+aeLh3BTQY5OZBC/8rkJmcSE\nh/DimhJS98VBAAAdLUlEQVS3o8hZULHyUUt2VTJj6CCiA2ibhZO5YUo2h2qa2XBI7+gCwfFpv8eW\n7KG0rpnPT8jga5cOY/CgaLejiTguOjyEaydl8tbWw9Q3d7gdR/pIxcoH7a86xv7qJi4fFXhnA57o\nqnHpRIYG86oWsfu1E6f9JubE860rRnDh0GSCg7SOSvzXbdNyaevs5vXNeo3zFSpWPujDwkoA5qhY\nERMewlXj0nlr62FaO7rcjiP9oPpYG78/YdrvxgtyiNXljCQAjMuKZ3xWvBax+xAVKx/0YWElI9Ji\nyEmKcjuKV7hhShaNrZ0s2VXpdhRxUHtnN+/trODRJXsorm3mc5r2kwB127RcCisa2Vxy1O0o0gcq\nVj6mobWDtQdqmTMqze0oXmPm0GTS4yL468ZSt6OIQ3aVN/Dokt0sK6pifFY8D88dwUxN+0mAumZS\nJlFhwby01vnraIrzVKx8zIrdVXR2Wy4frWnA44KDDNdNzmLZ7ioqG1vdjiPnoaS2mec/OcgfVh8i\nNDiI+y7K5+YCTftJYIvxLGJ/c0s5Da1axO7tVKx8zIe7KkmICmVKbqLbUbzKzQXZdHVbXlmn05J9\nUVtnF/+7ZA9XPLKc/VVNzB+XzjfmDGdIcuBdVUDkZG6blktLRxd/23zY7ShyBipWPqSr27K0qJLL\nRqZqSuQEQ1JimD0smRfXFNPZ1e12HDkLy3dXMe+XK/jF+7u5YnQa35o7gouGp+hnXKSX8VnxjM2M\n48U1WsTu7VSsfMjmkjrqmjt0NuAp3DljMIfrW1lSqEXsvuDw0Ra++scNfPGZtRhjeP7eaTx+xxRt\n8ilyEsYYbp2Wy67yBraW1rsdR05DxcqHLNlVSXCQ4eIRgXsZm9O5YnQqGfER/HH1IbejyGm0dnTx\nm2V7ueKR5XxYWMl3rhzBu/98kX6uRc7g2kmZRIZqEbu3U7HyIR8WVjI1L1Hv6E8hJDiI26fl8tGe\navZXHXM7jpzAWsuibeVc8chy/ufdImYNS+aDhy/hwTnDdW0/kT6Iiwjl8xMzeGPLYRq1iN1rqVj5\niNK6ZgorGrlitLZZOJ1bpuUQEmR4YY3e0XmT7WX13PLkar72wkZiwkN44b7p/PbuAu3FJnKWbpuW\nS3N7F29s0SJ2b6Vi5SPe23EE0G7rZ5IaG8FV49L58/oSWtq1E7vbKhta+e6ft/D5X69kX9Ux/vv6\n8bz9zYuYFcAXDxc5H5NyEhiVHqvpQC+mYuUj3t1ewci0WIak6PTzM7lrxmAaWjt5U+/oXNPa0cXj\nS/dy6c+X8frmMr5y0RCWfvdSbp+eq7P9RM6DMYbbp+eyvayBbVrE7pVUrHxAVWMb6w7VctW4dLej\n+IRp+UmMSIvh+dUHdVryAOvs6uZP64q57OfL+NniImYPS+b9b13CvywYTZw2+RRxxLWTsogIDeKl\ndRq18kYqVj7gvZ0VWAvzx6tY9YUxhrsuzGN7WQNrD9S6HScgWGt5d3s58361gu+/uo20uAhe+soM\nnrq7gLxkXdtPxEnxkaFcPT6Tv20qo6mt0+04cgIVKx/w7vYK8gZFMTIt1u0oPuPGKdkkx4Tx66V7\n3Y7i91btq+a636zigT9uxBjDwjsv4LWvzeTCoYPcjibit26fnkNTe5eWPHghFSsvV9/cwSf7arhq\nXAbGaG1KX0WGBfOVi4bw0Z5qNhXXuR3HL20vq+eu363h9t+uoaqhlf+5cQLvPnQRV41L18+qSD+b\nkpvIiLQYLWL3QipWXu6DXUfo7LZaX3UO7pgxmISoUH79oUatnFRY0cDXXtjA5/53JdvK6vnXq0fz\n4Xcu5eaCHEKC9ZIiMhCMMdw2LZctpfVsL9Midm/Sp1dBY8xVxpgiY8xeY8wPTnL/KGPMJ8aYNmPM\nd5yPGbje2V5BZnwEE7Pj3Y7ic2LCQ/jyrHyWFFbqhccBxwvVVb/6iI92V/PNOcNY8b3LuO+iIUSE\naoNPkYF2/eQswkOCeFmL2L3KGYuVMSYYeByYD4wBbjPGjDnhsFrgm8DPHU8YwJraOlmxp4p5mlo5\nZ3fPzCM2PITHtdbqnJ2sUH30/ct4+MqROtNPxEUJUWFcPT6D1zcdprldi9i9RV9GrKYBe621+621\n7cDLwLW9D7DWVlpr1wHaY99BS4sqae/s5qqxmgY8V/GRodwzK493tlew+0ij23F8yukKVUJUmNvx\nRAS4bXoux9o6eWtLudtRxCOkD8dkASW9Pi8FpvdPHOntne0VJMeEUZCX5HYUn/alWfn8buUBHl+6\nl0dvnex2HK/3yHu7+bDwCNsPNxAeEsScUanMGppMZFgwi7ZVuB1PRHopGJzIsNSefftuKsjW7IYX\nGNCVpsaY+40x640x66uqqgbyoX1Oa0cXSwsrmTsmXTtVn6ek6DDumjGYN7ccpqhCo1ancnyE6rEP\n97Cn8hhzRqXyvXmjuGJ0GpFhWkMl4o2MMdwzs2ffvvWHdAa0N+hLsSoDcnp9nu257axZa5+y1hZY\nawtSUlLO5VsEjOW7q2hu72K+zgZ0xAOXDCUuMpR/e2O7dmM/wYlTfipUIr7lhilZxEeG8szKA25H\nEfpWrNYBw40x+caYMOBW4I3+jSWvbSwjOSacmdpk0RGJ0WF858qRrN5fy5tbtRYBTr6GauX356hQ\nifiYqLAQbpuWy+IdFZTWNbsdJ+CdsVhZazuBB4HFwC7gFWvtDmPMA8aYBwCMMenGmFLgYeBfjTGl\nxpi4/gzuz+qbO/iwsJJrJmZqXyAH3TYtl3FZcfzX2zsD+jIQ/1CoLh/Oyu/P4eErRxIfpbP8RHzR\n3RcOxhjD858ccjtKwOvL4nWstYuARSfctrDXxxX0TBGKA97eVk57Vzc3TMlyO4pfCQ4y/PiacXzh\niVU89uEefjh/tNuRBlRhRQOPLdnDom0VxISH8M05w7h3dr7O8BPxA5kJkcwfl85La4t56PLhRIf3\n6de79AM9817otU2lDEuNYWymBv2cdsHgRG66IJtnVh7gpgtyGJYa43akfldU0chjS/bw9rZyFSoR\nP3bv7Hze2lrOqxtLufvCPLfjBCwVKy9TUtvMuoN1fHfeSJ0220++d9Uo3t1RwY/f3MHz907zquf5\nxTXO7aBc0dDKh55d58NDgrhsZAqzhiUTFRaibRNE/NCU3EQm5STw7McHuXP6YIJ0RrkrtIDHy7y+\nqeeEy2snZbqcxH+lxIbz7bkj+GhPNX90sMh4i4qGVl5cW8xjS/aw50gjl41M4bvzRjJ3TDpRYXov\nJeLP7p2dz4HqJpbtrnQ7SsDSq6wXsdby2qYypucnkZ0Y5XYcv3b3hXks313Ff7y5kwlZ8UzMSXA7\n0nmraGhlqWeEKuyEESoRCQzzx6WTER/BUyv2M2dUmttxApJGrLzIltJ69lc3adH6AAgKMjxy8yRS\nYsP52gsbOdrc7nakc3akoZWX1hbzv0v2UHSkkUtGpvDdKzVCJRKIQoOD+PLsfFbvr2XDoVq34wQk\nFSsv8vqmMsJCgrhqXIbbUQJCYnQYj98xhcrGVr79yha6u31r49DjheqxXoXqe1eO5Mox6UTpjCCR\ngHX79FwSo0J5fOk+t6MEJBUrL9HR1c2bWw4zd3Qa8ZHaS2igTMpJ4EcLRrOksJKFK3zjRai8vuXT\nNVRFRxq5ZIQKlYj8XVRYCPfOyufDwkp2HK53O07A0auwl/iwsJKapnaum6xpwIH2xZl5rDtUx88X\nF5ERH8H1k71zS7bSumaWFlayq6KR8JAgLhmRwuxhySpTIvIP7r4wjydX7Oc3y/bx+O1T3I4TUPSK\n7CX+8MkhMuIjuGykrqE40Iwx/OzGCdQea+fhV7bQ2tHNbdNy3Y71qUM1TSwtqmT3kWNEhAZx+ahU\nZg5N1mVnROSU4qNCuevCwSxcvo/9VccYkuL/e/Z5C00FeoG9lcdYubeaO6bn6hI2LokKC+HZL03l\nkhEp/PCv23j2Y3cvZmqtZX/VMZ5euZ8nV+yntK6FeWPS+N68UVyua/mJSB/cOyufsOAgFi73jWUO\n/kIjVl7gj6sPERpsuGWq94ySBKKI0GCevOsCvvnSJn785k6a27v42qVDB3QD0a5uy/bD9Xy8t5rS\nuhZiw0NYMC6dafmDCAtR6RaRvkuJDee2abn8cfUhHrpiBFkJkW5HCgh6pXZZU1snr24o5erxGaTE\nhrsdJ+CFhwTz69uncM3ETH62uIgvPrtuQK4WX9fUzsLl+/j5e0X8aV0JLe1dXDMxk+/MG8ns4Skq\nVSJyTr5y8RAAFi7TqNVA0YiVy17bVEZjWyd36bpOXiM0OIhf3TKJCwYn8tN3C7nylyv43ryR3H1h\nnqOXiOjqtny0p4o/ry/l/Z1HaO/qZkhyNNdOzGREeixBXnSpHRHxTVkJkdxUkMPL64r5ykVDyB2k\nzaf7m4qVi6y1PP/JQcZlxTEl1/d3/vYnQUGGL87M4/LRqfzLa9v59zd38trmw9w7K48rx6Sf8xqn\njq5u1h2o5YNdlbyzvZzy+lYSo0K5c8Zgbp6azcZDRx3+m4hIoPvnK4bz2qZSfvF+EY/eOtntOH5P\nxcpFaw7UsvvIMf7nCxO86kLA8nfZiVE896WpvLapjF+8t5uHXt5MbHgIn5uYwTUTsxiVHktidNgp\nv76xtYPCikZ2Hm5g/aE6lhVV0tjaSVhIELOHJfOvV4/hijGphIf0FDUVKxFxWlpcBPfOyuc3y/bx\nlYuGMC4r3u1Ifk3FykXPf3KQ+MhQPj9RF1z2ZsYYbpiSzXWTslh9oIa/bCjl9U2HeWltCQAJUaHk\nDYomIz6C9s5uWjq6aG7vorapneLav6/PSokNZ/64dC4fncbsYclEa/8pERkg/3TJUF5cW8xP3y3k\nD1+e7nYcv6ZXdpeU17eweMcRvjw7X6fO+4igIMPMocnMHJrM/722kzX7azhQ3fTpn91HGokIDSYq\nLJjYiBCyEyO5uSCbMZlxjM2MJzU2XCOTIuKK+MhQHrxsGP/59i4+3lvNrGHJbkfyWypWLnly+X4M\ncNeMwW5HkXMQEx7C5aN15XgR8R13zhjMMysP8JN3Cvnb12c5ejKO/J3O4XZBRX0rL64t5gtTsslJ\n0hkaIiLS/yJCg3n4ypFsK6tn0fZyt+P4LRUrFyxcvo/ubsvXLxvmdhQREQkg10/uOenm/y0qpLm9\n0+04fknFaoD1Hq3SfiIiIjKQgoMM/3HdOMqOtvDoB3vcjuOXVKwG2BPL9tLdbXlwjkarRERk4E3N\nS+KWghyeXnmAwooGt+P4HRWrAVRe38JLa0u48QKtrRIREff8YP4o4iJC+NFr2+nutm7H8SsqVgPo\niWX76LZaWyUiIu5KjA7jXxaMZsOhOv60vsTtOH5F2y0MkLKjLby8toSbCjRa5c1eXFPsdgQRkQFx\n4wXZ/GVDKT95p5C5Y9JIjgl3O5Jf0IjVAPnxGzsICkKjVSIi4hWMMfzX9eNobu/k39/YgbWaEnSC\nitUAeH/nEd7beYSHLh9BdqJGq0RExDsMS43locuH89bWcv68odTtOH5BxaqfHX8nMCIthvsuync7\njoiIyGd89dJhXDhkEP/2tx3srWx0O47P0xqrfvboB3soO9rCnx+4kNBg9dgz0RonEZGBFRxk+NWt\nk5j/6Ec8+OImXv/6LCJCdQ3bc6Xf9P2osKKBp1ce4JaCHKbmJbkdR0RE5KTS4iL4+U0TKKxo5P8t\n2uV2HJ+mYtVPurstP3ptO/GRofxg/ii344iIiJzWnFFp3Dsrn+c+OcTiHRVux/FZKlb95Inl+9hw\nqI4fzh9FYnSY23FERETO6PvzRzIhO55v/WkzW0uPuh3HJ6lY9YOP9lTxi/eK+NyEDG68INvtOCIi\nIn0SHhLM03cXkBgVxr2/X0dxTbPbkXyOipXDSuua+eZLmxiWGsNPvzABY4zbkURERPosNS6C5+6d\nSkeX5Z5n11Lb1O52JJ+iYuWg1o4uvvrHjXR2WZ68q4DocJ10KSIivmdYaixPf7GA0qMt3PfcOlo7\nutyO5DNUrBz0b3/bwbayeh65ZRL5ydFuxxERETlnU/OSePSWSWwqOcr9f9hAc3un25F8goqVA6y1\nPPL+bv60voQHLxvG3DFpbkcSERE5b/PHZ/DTGyawck8Vt/92DXWaFjwjFavzZK3lfxYX8diSPdxc\nkM235o5wO5KIiIhjbp6awxN3XsDO8gZuXLiKsqMtbkfyaipW58Fay3++vYsnlu3j9um5/OSGCQQH\nabG6iIj4l3lj03n+3mlUNrRx4xOrKKrQpW9ORcXqHHV3W/79jR38buUB7pmZx39dN44glSoREfFT\nM4YM4k//dCGd3ZZrH1/JC2sOYa11O5bXUbE6B5UNrdz9zFqe++QQ983O598+P0bbKoiIiN8bkxnH\n29+YzdS8JH702nbu/8MGbcdwAhWrs7S0sJKrHv2I9Ydq+ckN4/nR1aNVqkREJGCkxkXw3Jem8a9X\nj2Z5URVX/WoFH+w8otErDxWrPjrW1smP39zBl36/jtTYcN76xmxunZarUiUiIgEnKMhw30VDeO3r\nM4mLDOW+59dz+2/X6DI4gHawPIPWji5eWFPMb5bupaapnXtm5vGD+aOICA12O5qIiIirxmbG885D\nF/HS2mIe/WAP1/z6Y66ZmMlDVwxnaEqM2/FcoWJ1Cq0dXby+qYzHluzhcH0rM4cO4rvzRjI5N9Ht\naCIiIl4jNDiIuy/M4/rJWTy1Yj+//Wg/b2w5zMyhg7hzxmDmjkkjNDhwJshUrHqx1rLuYB1/3VjK\n21vLaWzrZGJOAj+7aSKzhiW7HU9ERMRrxUaE8u0rR3L3hXm8sr6EF9cU87UXNpISG841EzO5fFQq\nU/OT/L5k9alYGWOuAh4FgoGnrbU/OeF+47l/AdAM3GOt3ehw1n5xpKGV1ftrWL2/lo/2VFFa10JU\nWDDzx2XwhSlZXDh0kNZRiYiI9FFKbDhfv2wYD1wylOW7K3lxTTF/+OQQv1t5gNjwEC4emcKFQwYx\nKSeBkemxfle0zlisjDHBwOPAXKAUWGeMecNau7PXYfOB4Z4/04EnPP/1Cp1d3dQ2tVPR0Mq+qmPs\nrez5U1TRyMGaZgBiw0OYlp/Ew3NHMG9sui6gLCIich6CgwxzRqUxZ1QaTW2drNxbzdLCSj4srOTt\nreUAhIUEMSYjjpFpsQxOjmJwUjSDB0WRER9BQlSYT2663Zf2MA3Ya63dD2CMeRm4FuhdrK4Fnrc9\n51quNsYkGGMyrLXljifuo91HGnno5c1UNbZR09RG77NAg4MMgwdFMTI9ljumD2bGkEGMyYzzyX9A\nERERbxcdHsK8senMG5uOtZbSuha2lB5la2k9W0qOsqSwkupjbZ/5miADiVFhDIoJIzYilMjQYCJC\ng4kKC/6H39czhw7ipoKcgfwrnVJfilUWUNLr81L+cTTqZMdkAa4Vq5jwELISIpiUE09KTDgpcRGk\nxIQzJCWavEHRhIX419CjiIiILzDGkJMURU5SFJ+bkPnp7cfaOimuaeZQTRNHGlqpbWqnuqmdmmNt\nHGvrpLm9k5qmdlraO+k+YcusnMTIAf5bnNqAzncZY+4H7vd8eswYUzSQjy9nlAxUux3CS+m5OT09\nP6em5+bU9Nycwh1uB/AxHwHf7v+HGdyXg/pSrMqA3uNr2Z7bzvYYrLVPAU/1JZgMPGPMemttgds5\nvJGem9PT83Nqem5OTc+N+KO+zIetA4YbY/KNMWHArcAbJxzzBnC36TEDqHdzfZWIiIiIG844YmWt\n7TTGPAgspme7hWestTuMMQ947l8ILKJnq4W99Gy38KX+iywiIiLinfq0xspau4ie8tT7toW9PrbA\n152NJi7QNO2p6bk5PT0/p6bn5tT03IjfMboatYiIiIgztOeAiIiIiENUrATouWyRMabIGLPXGPMD\nt/N4C2PMM8aYSmPMdrezeBtjTI4xZqkxZqcxZocx5iG3M3kLY0yEMWatMWaL57n5sduZvI0xJtgY\ns8kY85bbWUScpGIlvS9bNB8YA9xmjBnjbiqv8XvgKrdDeKlO4NvW2jHADODr+rn5VBswx1o7EZgE\nXOU5Y1r+7iFgl9shRJymYiXQ67JF1tp24PhliwKetXYFUOt2Dm9krS0/frF1a20jPb8ks9xN5R1s\nj2OeT0M9f7Sg1cMYkw1cDTztdhYRp6lYCZz6kkQifWKMyQMmA2vcTeI9PFNdm4FK4H1rrZ6bv/sV\n8D2g2+0gIk5TsRKR82KMiQFeBf7ZWtvgdh5vYa3tstZOoudKFNOMMePczuQNjDGfAyqttRvcziLS\nH1SsBPp4SSKRExljQukpVS9Ya//qdh5vZK09CixFa/WOmwVcY4w5SM+ygznGmD+6G0nEOSpWAn27\nbJHIZxhjDPA7YJe19hG383gTY0yKMSbB83EkMBcodDeVd7DW/tBam22tzaPnteZDa+2dLscScYyK\nlWCt7QSOX7ZoF/CKtXaHu6m8gzHmJeATYKQxptQY82W3M3mRWcBd9Iw4bPb8WeB2KC+RASw1xmyl\n543L+9ZabSsgEgC087qIiIiIQzRiJSIiIuIQFSsRERERh6hYiYiIiDhExUpERETEISpWIiIiIg5R\nsRIRERFxiIqViJyRMabLs0/VDmPMFmPMt40xQZ77Cowxj53ma/OMMbcPXNp/eOwWzzX7vIIx5hZj\nzF5jjPa1EvFDKlYi0hct1tpJ1tqx9OwiPh/4NwBr7Xpr7TdP87V5gCvFymOf55p9fWaMCe6vMNba\nPwH39df3FxF3qViJyFmx1lYC9wMPmh6XHh99McZc0msX9k3GmFjgJ8BFntu+5RlF+sgYs9HzZ6bn\nay81xiwzxvzFGFNojHnBc9kcjDFTjTGrPKNla40xscaYYGPMz4wx64wxW40x/9SX/MaY140xGzyj\nb/f3uv2YMeYXxpgtwIWneMyxno83ex5zuOdr7+x1+5PHi5kx5irP33GLMWaJg/8MIuKlQtwOICK+\nx1q731MeUk+46zvA1621HxtjYoBW4AfAd6y1nwMwxkQBc621rZ5i8hJQ4Pn6ycBY4DDwMTDLGLMW\n+BNwi7V2nTEmDmgBvgzUW2unGmPCgY+NMe9Zaw+cIf691tpazzX81hljXrXW1gDRwBpr7bc918ws\nPMljPgA8aq19wXNMsDFmNHALMMta22GM+Q1whzHmHeC3wMXW2gPGmKSzfqJFxOeoWImIkz4GHjHG\nvAD81Vpb6hl06i0U+LUxZhLQBYzodd9aa20pgGddVB5QD5Rba9cBWGsbPPdfCUwwxtzo+dp4YDhw\npmL1TWPM9Z6PczxfU+PJ8qrn9pGneMxPgB8ZY7I9f789xpjLgQvoKWkAkUAlMANYcbzoWWtrz5BL\nRPyAipWInDVjzBB6ikglMPr47dbanxhj3gYW0DOCNO8kX/4t4AgwkZ7lCK297mvr9XEXp3+NMsA3\nrLWLzyL3pcAVwIXW2mZjzDIgwnN3q7W263Rfb6190RizBrgaWOSZfjTAc9baH57wWJ/vay4R8R9a\nYyUiZ8UYkwIsBH5tT7iKuzFmqLV2m7X2p8A6YBTQCMT2OiyentGgbuAu4EwLxYuADGPMVM9jxBpj\nQoDFwFeNMaGe20cYY6LP8L3igTpPqRpFz6hSnx/TUyj3W2sfA/4GTACWADcaY1I9xyYZYwYDq4GL\njTH5x28/QzYR8QMasRKRvoj0TM2FAp3AH4BHTnLcPxtjLgO6gR3AO56PuzyLwn8P/AZ41RhzN/Au\n0HS6B7bWthtjbgH+17MuqoWeUaen6Zkq3OhZ5F4FXHeGv8e7wAPGmF30lKfVZ/mYNwN3GWM6gArg\nvz3rtf4VeM/0bEHRQc86s9WexfF/9dxeSc8ZlSLix8wJbzhFRPyGMSYPeMtaO87lKJ/hmZL8dEG/\niPgPTQWKiD/rAuKNl20QSs+oXZ3bWUTEeRqxEhEREXGIRqxEREREHKJiJSIiIuIQFSsRERERh6hY\niYiIiDhExUpERETEIf8f7Yg0wGcoYFYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(cfhtls_wide['cfhtls-wide_ra'], cfhtls_wide['cfhtls-wide_dec'])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, \n", + " cfhtls_wide, \n", + " \"cfhtls-wide_ra\", \n", + " \"cfhtls-wide_dec\", \n", + " radius=0.8*u.arcsec)\n", + "master_catalogue = merge_catalogues(master_catalogue, \n", + " cfhtls_deep, \n", + " \"cfhtls-deep_ra\", \n", + " \"cfhtls-deep_dec\", \n", + " radius=0.8*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add CFHT-LenS\n", + "\n", + "CFHTLenS is no longer included since it is made from the same raw data as CFHTLS" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"\\nnb_merge_dist_plot(\\n SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\\n SkyCoord(cfhtlens['cfhtlens_ra'], cfhtlens['cfhtlens_dec'])\\n)\\n\"" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\"\"\"\n", + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(cfhtlens['cfhtlens_ra'], cfhtlens['cfhtlens_dec'])\n", + ")\n", + "\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'# Given the graph above, we use 0.8 arc-second radius\\nmaster_catalogue = merge_catalogues(master_catalogue, \\n cfhtlens, \\n \"cfhtlens_ra\", \\n \"cfhtlens_dec\", \\n radius=0.8*u.arcsec)'" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\"\"\"# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, \n", + " cfhtlens, \n", + " \"cfhtlens_ra\", \n", + " \"cfhtlens_dec\", \n", + " radius=0.8*u.arcsec)\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add HSC-PSS" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAF3CAYAAACfXf7mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8XFeB9vHfmRn13rvk3rtlx3ac4nSnkJA4hYQESCBk\nCcvuy8IS4N0CLLuEhXchEMiGFgIBp5PmOMVJSLHjWO623OSm3iyrW23mvH9YBsWx8diW5k55vp/P\nfqKZuVd6tLueeXTPuecYay0iIiIiMrJcTgcQERERiQQqXSIiIiIBoNIlIiIiEgAqXSIiIiIBoNIl\nIiIiEgAqXSIiIiIBoNIlIiIiEgAqXSIiIiIBoNIlIiIiEgAqXSIiIiIB4HE6wIlkZmbaUaNGOR1D\nRERE5JTWr1/fbK3NOtVxQVm6Ro0aRVlZmdMxRERERE7JGHPQn+M0vCgiIiISACpdIiIiIgGg0iUi\nIiISACpdIiIiIgGg0iUiIiISACpdIiIiIgGg0iUiIiISACpdIiIiIgHgV+kyxlxhjNlljKkwxtz3\nN46bZ4wZMMYsO91zRURERMLZKUuXMcYNPAgsBaYAnzDGTDnJcfcDr57uuSIiIiLhzp8rXfOBCmvt\nPmttH7AcuPYEx/098DTQeAbnioiIiIQ1f0pXAVA15HH14HN/YYwpAD4O/Px0zxURERGJBMM1kf5H\nwNestb4z/QbGmLuNMWXGmLKmpqZhiiUiIiISHDx+HFMDFA15XDj43FClwHJjDEAmcKUxZsDPcwGw\n1j4MPAxQWlpq/Qkv4eMPayudjjBsbj2n2OkIIiIShPwpXeuA8caY0RwtTLcAtw49wFo7+tjXxphH\ngBettX8yxnhOda6IiIhIJDhl6bLWDhhjvgi8AriBX1trtxtj7hl8/aHTPXd4oouIiIiEDn+udGGt\nXQGsOO65E5Yta+2nT3WuiIiISKTRivQiIiIiAaDSJSIiIhIAKl0iIiIiAaDSJSIiIhIAKl0iIiIi\nAaDSJSIiIhIAKl0iIiIiAaDSJSIiIhIAKl0iIiIiAaDSJSIiIhIAKl0iIiIiAaDSJSIiIhIAKl0i\nIiIiAaDSJSIiIhIAKl0iIiIiAaDSJSIiIhIAKl0iIiIiAaDSJSIiIhIAKl0iIiIiAaDSJSIiIhIA\nKl0iIiIiAaDSJSIiIhIAKl0iIiIiAaDSJSIiIhIAKl0iIiIiAaDSJSIiIhIAKl0iIiIiAaDSJSIi\nIhIAKl0iIiIiAaDSJSIiIhIAfpUuY8wVxphdxpgKY8x9J3j9WmPMFmPMJmNMmTFm8ZDXDhhjth57\nbTjDi4iIiIQKz6kOMMa4gQeBS4FqYJ0x5nlrbfmQw1YBz1trrTFmBvAEMGnI60ustc3DmFtEREQk\npPhzpWs+UGGt3Wet7QOWA9cOPcBa22mttYMPEwCLiIiIiPyFP6WrAKga8rh68LkPMcZ83BizE3gJ\nuHPISxZ43Riz3hhz99mEFREREQlVwzaR3lr7rLV2EnAd8J0hLy221s4ClgL3GmPOP9H5xpi7B+eD\nlTU1NQ1XLBEREZGg4E/pqgGKhjwuHHzuhKy1bwNjjDGZg49rBv/bCDzL0eHKE533sLW21FpbmpWV\n5Wd8ERERkdDgT+laB4w3xow2xkQDtwDPDz3AGDPOGGMGv54DxACHjDEJxpikwecTgMuAbcP5C4iI\niIiEglPevWitHTDGfBF4BXADv7bWbjfG3DP4+kPADcAdxph+4Ahw8+CdjDnAs4N9zAP8wVq7coR+\nFxEREZGgdcrSBWCtXQGsOO65h4Z8fT9w/wnO2wfMPMuMIiIiIiFPK9KLiIiIBIBKl4iIiEgAqHSJ\niIiIBIBKl4iIiEgAqHSJiIiIBIBKl4iIiEgAqHSJiIiIBIBKl4iIiEgAqHSJiIiIBIBKl4iIiEgA\nqHSJiIiIBIBKl4iIiEgAqHSJiIiIBIBKl4iIiEgAqHSJiIiIBIBKl4iIiEgAqHSJiIiIBIBKl4iI\niEgAqHSJiIiIBIBKl4iIiEgAqHSJiIiIBIBKl4iIiEgAqHSJiIiIBIBKl4iIiEgAeJwOICIike0P\nayudjjBsbj2n2OkIEsR0pUtEREQkAFS6RERERAJApUtEREQkAFS6RERERAJApUtEREQkAPwqXcaY\nK4wxu4wxFcaY+07w+rXGmC3GmE3GmDJjzGJ/zxURERGJBKcsXcYYN/AgsBSYAnzCGDPluMNWATOt\ntbOAO4Ffnsa5IiIiImHPnytd84EKa+0+a20fsBy4dugB1tpOa60dfJgAWH/PFREREYkE/pSuAqBq\nyOPqwec+xBjzcWPMTuAljl7t8vtcERERkXA3bBPprbXPWmsnAdcB3znd840xdw/OBytramoarlgi\nIiIiQcGf0lUDFA15XDj43AlZa98GxhhjMk/nXGvtw9baUmttaVZWlh+xREREREKHP6VrHTDeGDPa\nGBMN3AI8P/QAY8w4Y4wZ/HoOEAMc8udcERERkUhwyg2vrbUDxpgvAq8AbuDX1trtxph7Bl9/CLgB\nuMMY0w8cAW4enFh/wnNH6HcRERERCVqnLF0A1toVwIrjnntoyNf3A/f7e66IiIhIpNGK9CIiIiIB\noNIlIiIiEgAqXSIiIiIBoNIlIiIiEgAqXSIiIiIBoNIlIiIiEgAqXSIiIiIBoNIlIiIiEgAqXSIi\nIiIBoNIlIiIiEgAqXSIiIiIBoNIlIiIiEgAqXSIiIiIBoNIlIiIiEgAqXSIiIiIBoNIlIiIiEgAq\nXSIiIiIBoNIlIiIiEgAqXSIiIiIBoNIlIiIiEgAqXSIiIiIBoNIlIiIiEgAqXSIiIiIBoNIlIiIi\nEgAepwOIiEjk8Pks/T4ffQM++r0WA1hrMcY4HU1kxKl0iYiEoD+srXQ6wilZa2no6KWqpZuqlm6q\nDx+hob0He9xx8dFuclNiyUuOJT81jil5ycREuR3JLDKSVLpERGRYdfUOsLGqlbIDLTR29AIQF+Wm\nKD2OiblZxHhcuF0Gt8vg81kaO3qpb+/hgwMt9Hst0W4XM4tSmDcqncK0eId/G5Hho9IlIiLDoq7t\nCG/taqK8rh2vz1KUFse1s/IZm5VIRkL0KYcQfdZS3dLNuoOH2VTVyroDhylIjePK6XmMzkwI0G8h\nMnJUukRE5Ky0Henn9fIGNlQeJibKxTmj0yktSSc3Jfa0vo/LGIozEijOSOCq6Xlsqmrl7T1N/OKd\nfZSWpLF0Wh5x0Rp2lNCl0iUiImekb8DHn3c38m5FMz4L547L5MKJWcRHn/1HS2yUmwVjMphTnMaq\nnQ28V9HMjvoOrp6Rx8zC1GFILxJ4fv3LMMZcAfwYcAO/tNZ+77jXbwO+BhigA/g7a+3mwdcODD7n\nBQastaXDll5ERBxRc/gIT5RV0dTZy4zCFC6bkkt6QvSw/5xoj4ul044WrT9tquHxdVVUtXRz5fQ8\nXLrjUULMKUuXMcYNPAhcClQD64wxz1try4ccth+4wFp72BizFHgYOGfI60ustc3DmFtERBzg9Vn+\nvLuJN3Y2kBjj4c5zRzMuO3HEf25+ahz3XDCWl7fW8d7eQ7R293NTaRHRHi03KaHDnytd84EKa+0+\nAGPMcuBa4C+ly1q7esjx7wOFwxlSRESc19rdx/J1VVS2dDOjMIVrZxYEdI6VyxiumpFPWkI0L22p\n45fv7uP2BSUkxUYFLIPI2fDnT4QCoGrI4+rB507mLuDlIY8t8LoxZr0x5u7TjygiIk6rPNTFz97a\nS0N7DzeVFnHLvGLHJrUvGpvJJxeU0NDew0N/3ktrd58jOURO17BelzXGLOFo6frakKcXW2tnAUuB\ne40x55/k3LuNMWXGmLKmpqbhjCUiImdhY+VhfvHufqI9Lu65YCyzipyfyD45L5nPnTeGI/1efvPe\nAbp7B5yOJHJK/pSuGqBoyOPCwec+xBgzA/glcK219tCx5621NYP/bQSe5ehw5UdYax+21pZaa0uz\nsrL8/w1ERGRE+Kxl5bZ6nlxfTUl6PF+4YCw5yae3DMRIKkyL55MLSjjc3cej7x+kb8DndCSRv8mf\n0rUOGG+MGW2MiQZuAZ4feoAxphh4BrjdWrt7yPMJxpikY18DlwHbhiu8iIiMDK/P8tT6at7e08T8\n0el85tzRxMcE3ypDYzITuam0iKqWbpavq8TrO36TIZHgccrSZa0dAL4IvALsAJ6w1m43xtxjjLln\n8LB/BTKAnxljNhljygafzwHeNcZsBj4AXrLWrhz230JERIbNgNfHHz+oZFNVK5dNyeHamfm4XcG7\nPMO0ghSumZnPzvoOnttUg7UqXhKc/PqzxVq7Alhx3HMPDfn6s8BnT3DePmDmWWYUEZEA6Rvw8fu1\nB6lo7OTqGXksGpvpdCS/LBiTQUdPP2/uaiI/NY4FYzKcjiTyEVrgREREAOjp9/Kb1fvZ29jJDXMK\nQqZwHXPx5Bwm5CSyYmsdta1HnI4j8hEqXSIiQt+Aj0fXHKCqpZtb5hcztyTd6UinzWUMy+YWER/t\nZvm6KnoHvE5HEvkQlS4RkQg34PXx2NqDHDzUzU2lRUwvSHE60hlLjPFwU2kRhzp7eWFzrdNxRD5E\npUuCmrVWdyOJjCCvz7J8XRV7Gjv5+OwCZoTBZtJjshJZMimbDZWtbKw87HQckb8Ivvt/JaJVH+7m\npS11NHf10e/1MeD14bMwNiuBK6fnkZcS53REkbDhs5anN1RTXtfO1TPyKB0VekOKJ7NkYjb7mrp4\nblMtJRkJI7IZt8jp0pUuCQr9Xh8rt9Xx87f20tLdx5S8ZOaVpHH+hCzOH59FbWsPP32jgj9trKFT\nK0+LDIuV2+r/sixEqE2aPxW3y3BTaSEYtIyEBA1d6RLHlR1o4YFVezjU1UdpSRpLp+V9ZE+38ydk\n8sbORt7fd4jN1a3cMKeQaSE870TEaav3NvNuRTMLx2Zw4cRsp+OMiNT4aC6bksOLW+rYWtMWFkOn\nEtp0pUsctf7gYW79xVp81nLnuaO5fk7hCTfRjY/2cPWMfL508Xiyk2J4oqyKA81dDiQWCX3ltW28\ntKWOKXnJXDU9z+k4I2rBmAwKUuN4cUsdR/p0N6M4S6VLHNPQ3sPf/X49uSmx3LtkHOOyE095TnZS\nLJ9aOIrU+Ch+9/5Bmjt7A5BUJHxUtnSzfF0VhWlx3FRahMsE70rzw8FlDB+fXUBX7wCvbK93Oo5E\nOJUucUTvgJe/+/16OnoGePiOucRH+z/SHR/j4VMLR2EMPLL6gOZ4ifippauPR9ccIDkuitsXjiLa\nExkfAfmpcZw7LpMPDrRw8JCukItzIuNfnAQVay3/9tx2NlS28sObZjIpN/m0v0dGYgx3LCih/Ug/\nv3//IP1e3wgkFQkfvf1efvf+AayFTy8cRWIQbl49ki6enE1qXBTPbqzRMjTiGJUuCbjH1layfF0V\n9y4Zy5VnMZ+kOCOBG0uLqGzp5uVtdcOYUCS8+KzlyfXVNLb3csv8IjKTYpyOFHAxHjfXzMynsaOX\nDw60OB1HIpRKlwRUVUs3336xnAsnZvHlSyee9febXpDCgjEZrN3Xor3WRE7ijZ2NlNe1c+X0PMZn\nJzkdxzGTcpMYk5nAGzsa6OnXpHoJPJUuCaj/fmUXLgP/df103K7hmcB76eQc4qLdvLC5VmvxiBxn\nW00bb+xsZE5xGovGZjgdx1HGGK6YlktXn5e39zQ5HUcikEqXBMzGysM8v7mWz503ZlhXlo+LdnPF\n1FwOtnSzqap12L6vSKirb+vhyfVVFKXFcd2sfEyY36noj8K0eGYUpvBeRTNtR/qdjiMRRqVLAsJa\ny3+8tIPMxBg+f8HYYf/+c0rSKEyLY+W2eg0biAA9/V4eW3uQWI+b2xaU4HHr7f6Yy6bk4rPw+o4G\np6NIhNG/QgmIl7fVs/7gYf7psgkjcteUyxg+NjOfzt4B3tjZOOzfXySUWGt5an01h7v7uGV+Mcmx\nUU5HCirpCdEsHJPBhoOHqW/rcTqORBCVLhlxvQNevvfyTibmJHFTadGI/ZzCtHjmlqSxem8zDe16\nI5XI9W5FM+V17VwxNZfRmQlOxwlKF07MIibKxcrtuvNZAkelS0bc79YcpLKlm29cNXnYJs+fzOVT\nc4n2uDRsIBFrX3Mnr2yvZ2p+MueOC69NrIdTfLSHCydks7uhk/3aUkwCRKVLRlRX7wA/eaOC8ydk\nccGErBH/eQkxHhaMzqC8tp3mDm0RJJGlo6ef5R9UkZ4QzQ1zCjVx/hQWjMkgIcbDm7s0JUECQ6VL\nRtTTG6ppO9LPP1w8LmA/c+HYDNwuo1vCJaL4rOXxsip6B7zcek4JsVEf3ThePiza4+K8cZlUNHZS\n1dLtdByJACpdMmJ8Pstv3jvAzKJU5hSnBeznJsVGMbckjY1VrbTrlnCJEG/tamJfUxfXzMgnNznW\n6Tgh45wx6cRHu3UDjgSESpeMmDd3NbK/uYu7Fo8O+DDHeeOz8Pks7+1tDujPFXHC/uYuVu1oYGZh\nCnNLAvcHTjiI8bhZPC6TXQ0d1BzWrhYyslS6ZMT86t395KXEsnRabsB/dnpCNNMLU/hgfwtH+rRu\nl4Svrt4BHl9XSXpCNNfNKtA8rjOwYEwGsVEuze2SEafSJSOivLad1XsPccfCUUQ5tCjj+eOz6B3w\nsXb/IUd+vshIs9by9IZquvq83DK/mBjN4zojsVFuzh2bSXldO3VtutolI0elS0bEr9/bT1yUm1vn\nFzuWIT81jvHZiazee4h+r8+xHCIjZc2+Q+ys72DptFwKUodva61ItGhsJjEeF2/u0g04MnJUumTY\nNXb08PymWpbNLSQl3tmVsC+YkEVn7wAbKg87mkNkuNW39bByWz2TcpNYOCayN7IeDnHRbhaOzWB7\nTRtNWm5GRohKlwy7379fSZ/Xx2fOHeV0FEZnJpCfEssH+1uw1jodR2RY9PR7ebysktgoN9drPa5h\ns2hsJm6X4b0K3YAjI0OlS4ZV34CPP6w9yMWTshmTleh0HIwxzBudTl1bDzWtmqsh4eF7L++kob2X\nZXMLR2Qv00iVGONhdnEqGyoP09k74HQcCUMqXTKs3trVSHNnH7ctcG4u1/FmFqYS5TZ8sL/F6Sgi\nZ+3NnY08svoAi8ZmMCEnyek4YefcsZkM+Cwf6AYcGQF+lS5jzBXGmF3GmApjzH0neP02Y8wWY8xW\nY8xqY8xMf8+V8PLU+moyE2M4f/zIb/njr9goNzMLU9lS3UZvv5aPkNDV3NnLV5/azKTcJC6fGvil\nWCJBdnIsE3OSWLOvRTfgyLA7ZekyxriBB4GlwBTgE8aYKccdth+4wFo7HfgO8PBpnCth4lBnL2/s\nbOT6OQV4HFom4mTmjUqnz+tjc3Wb01FEzoi1lq8/s5X2ngF+fMtsx5ZiiQSLx2fS1TvA5qpWp6NI\nmPHnX+18oMJau89a2wcsB64deoC1drW19tjtYe8Dhf6eK+HjuU21DPgsN8wpPPXBAVaYFkducizr\nDmiIUULT0xtqeK28ga9eNpGJuRpWHEljMhPIS4nl3Ypm3YAjw8qf0lUAVA15XD343MncBbx8hudK\nCHtqfTUzClOC8gPh2IT6mtYj2upDQk5N6xG+9fx25o9O587Fo52OE/aMMSwel0ljRy97GjudjiNh\nZFivTxtjlnC0dH3tDM692xhTZowpa2rS4nShZnttG+V17SybG3xXuY6ZNTihXle7JJT4fJavPrkZ\nn7X88MaZuF1aHiIQphemkBzr4d09Wj5Cho8/pasGKBryuHDwuQ8xxswAfglca609dDrnAlhrH7bW\nllprS7OygmcStvjn6fU1RLtdXDMj3+koJxUX7WZ6QQqbqlvpHdCEegkNv11zgNV7D/EvV0+hKD3e\n6TgRw+NysXBsJhVNndS39TgdR8KEP6VrHTDeGDPaGBMN3AI8P/QAY0wx8Axwu7V29+mcK6Gvb8DH\nnzbVcMmUbNISop2O8zfNG5VO34CPrZpQLyGgorGT7728k4smZXPzvKJTnyDDal5JGh6X4X0tHyHD\n5JSly1o7AHwReAXYATxhrd1ujLnHGHPP4GH/CmQAPzPGbDLGlP2tc0fg9xAHvbWrkZauvqAeWjym\nOD2erMQYNlTqriQJbgNeH//0xCbiot187/rpWnXeAfExHmYUprKpspUeLTcjw8CvpYyttSuAFcc9\n99CQrz8LfNbfcyW8PLW+mqyk4Fqb62SMMcwqTuW18gYOd/eRFh/cV+Ykcv3srb1srm7jwVvnkJ0c\n63SciLVgTDobKg+zofIwi8ZmOh1HQpwWepGz0tbdz5u7GrluVn7Qrc11MjMLUwHYojV4JEhtrW7j\ngVV7uHZWPlfNyHM6TkQrTIunMC2Otfu0f6ucvdD4lJSg9Up5Pf1eyzUzg3cC/fHSE6IpSY9nY1Wr\n3kQl6PT0e/nyE5vISIzm2x+b5nQcARaMyaCps5d9zV1OR5EQp9IlZ+XFLXUUp8czvSDF6SinZVZx\nKo0dvdTpriQJMj98dRd7Gjv5/rKZpMRHOR1HgOkFKcRHu3l/nybUy9lR6ZIzdrirj/cqmrlqRl7I\nTfKdnp+Cy6BtPiSorDvQwi/f3c9t5xRzwYTgnyMZKaLcLkpL0thR107bkX6n40gIU+mSM/bK9nq8\nPstV00Nvzkl8jIeJOUlsrm7FpyFGCQJH+rz881NbKEyL4xtXTnY6jhxn/ugMrIUPtHyEnAWVLjlj\nL26pY1RGPFPzk52OckZmFafR3jPAvibN0xDn/c/ru9nf3MX3rp9BQoxfN5ZLAKUnRDMxN4l1Bw4z\n4PM5HUdClEqXnJFDnb2s3huaQ4vHTMpNIsbj0hCjOG5j5WF++c4+PjG/mHPHaVmCYHXO6Aw6ewfY\nUdfhdBQJUSpdckZWbq/HZ+HqIN7251Si3C6m5aewrbaNfq/+chVn9A4cHVbMSY7l61dOcjqO/A3j\ncxJJjYvS/q1yxlS65Iy8uLmOMVkJTMpNcjrKWZlVnErvgI8dde1OR5EI9ZNVFexp7OQ/r59Ocqzu\nVgxmLmOYOyqNisZOWrr6nI4jIUilS05bY0cPa/cf4urpoTu0eMzozASSYj1srdFejBJ422ra+Pmf\n93LDnEKWTMx2Oo74obQkHQOU6WqXnAGVLjltK7cdHVq8KoSHFo9xGcPU/BR21XfQO6C91SRw+r0+\nvvrUFtITovmXq3W3YqhIiYtiQk4S6ysP4/Xpzmc5PSpdctpe3FLH+OxEJob40OIx0wtSGPBZdtZr\ncqwEzs/f2suOuna+e900UrUHaEiZPzqdjp4Bduk9Q06TSpeclqaOXtYdaGFpCK7NdTIlGfEkxXrY\npiFGCZBd9R385I09XDMzn8um5jodR07ThJwkkmM9mlAvp02lS07L6zsasBauCKMPCg0xSiANeH38\n81ObSY6N4t+vmeJ0HDkDbpdhTkkauxs6aO3WhHrxn0qXnJZXttdTmBbH5LzwGFo85tgQo4YLZKT9\n6t39bK5u41vXTiUjMcbpOHKGSkvSAVh/8LDDSSSUqHSJ3zp6+lldcYjLp+aG/F2LxyvJiCcpRncx\nysja29TJD1/bzeVTc0Jy+yz5q/SEaMZlJ1J28LC2EhO/qXSJ397a1USf18flYTS0eIzLGKYWJGuI\nUUaM12f556e2EBfl5jvXTQu7P1wiUemodNqO9FPR2Ol0FAkRKl3it1e215OREM3ckjSno4yIaRpi\nlBH06JoDrD94mH+7ZgrZSbFOx5FhMDk3ibgoNxsqNcQo/lHpEr/0Dnh5a1cTl07Jwe0Kz7/QR2Uk\naIhRRsTBQ118f+UulkzM4uOzC5yOI8PE43YxsyiV8tp2jvTpCrmcmkqX+GX13kN09g5w2dQcp6OM\nmGNDjLsbOugb0F6MMjx8Pst9T2/F4zL85/XTNawYZuaWpDHgs2yubnU6ioQAlS7xy6vb60mIdrNo\nbKbTUUbUtIIU+r2WnfXai1GGxx/XVbJm3yG+edVk8lLinI4jwyw/JZbc5FgNMYpfVLrklLw+y2vl\nDVw4KZvYKLfTcUbUqIwEEmO0UKoMj5rWI/zXip2cOy6Dm+cVOR1HRoAxR9fsqj58hIb2HqfjSJBT\n6ZJT2lB5mObOvrC8a/F4RxdKTWaXhhjlLFlr+fozW/FZy/eun6FhxTA2qygVl4ENWrNLTkGlS07p\n1e31RLkNSyZmOR0lIKZriFGGwVPrq3l7dxP3LZ1EUXq803FkBCXGeJiUm8zGqlb6vfpjTU5OpUv+\nJmstr2xvYNHYTJJio5yOExCjMjXEKGenob2H77xYzvxR6XzynBKn40gAzClOo7N3gLd3NzkdRYKY\nSpf8TbsbOqls6Q7ruxaPpyFGORvWWr757DZ6B3zcv2wGrjBdYkU+bGJuEgkxHp4sq3Y6igQxj9MB\nJLi9vqMBgEsmR07pgqNDjGv3t7CroYPpBSlOx5Fh8oe1lSP+MzZXtfL6jgaunJbLmr2HWLP30Ij/\nTHGe22WYXZTKqp0NtHT1kZ4Q7XQkCUK60iV/02vlDcwsTCEnObJW0D42xKiFUuV0dPYO8MKWWorS\n4lg0LryXV5GPmlOcRr/X8tymGqejSJBS6ZKTauzoYVNVa8Rd5YIhQ4z17RpiFL+9sLmW3gEf188p\nxKW7FSNObkos0wtSNMQoJ6XSJSe1akcjAJdG0HyuoY4tlLqrQXsxyqltq2lja00bF0/Kjrgrw/JX\nN5YWUl7XzvZaXSWXj/KrdBljrjDG7DLGVBhj7jvB65OMMWuMMb3GmK8c99oBY8xWY8wmY0zZcAWX\nkfd6eQOFaXFMzElyOoojRmcmkKAhRvFDd+8Az2+uJT81lvPGR8bSKnJiH5uZT7TbxVPrdbVLPuqU\npcsY4wYeBJYCU4BPGGOmHHdYC/Al4Acn+TZLrLWzrLWlZxNWAqe7b4B3K5q5ZHJOxC7q6DKGaRpi\nFD+8tLWO7r4BbphTGLYbwot/UuOjuXRKDs9tqtX7hnyEP1e65gMV1tp91to+YDlw7dADrLWN1tp1\nQP8IZBQHvLOnmd4BH5dNicyhxWM0xCinsrO+nY1VrVw4MVt7KwoAy0oLaenq442dDU5HkSDjT+kq\nAKqGPK4yhMqIAAAgAElEQVQefM5fFnjdGLPeGHP36YQT57xe3kBSrId5o9OdjuKoY0OMWihVTqSn\n38ufNtaQkxzDhRGyY4Oc2nnjMslOitEQo3xEICbSL7bWzuLo8OS9xpjzT3SQMeZuY0yZMaasqUkr\n+jrJ67O8sbORJROziXJH9r0Wf72LUQulyket2FpHZ+/RYUWPK7L/rchfedwurp9TyJu7mmjs0CbY\n8lf+vEvUAEVDHhcOPucXa23N4H8bgWc5Olx5ouMettaWWmtLs7L0F6OTNlUd5lBXH5dG+NDiMdPy\nU+jz+titIUYZYndDB2UHD3Pe+CwK07S3onzYjaWFeH2WP23Uml3yV/6UrnXAeGPMaGNMNHAL8Lw/\n39wYk2CMSTr2NXAZsO1Mw0pgvFregMdluEDDJcDRIcb4aDfbdAu4DOrp9/LsxhqykmK4aFK203Ek\nCI3NSmROcSpPllVjrXU6jgSJU5Yua+0A8EXgFWAH8IS1drsx5h5jzD0AxphcY0w18GXg/xpjqo0x\nyUAO8K4xZjPwAfCStXblSP0yMjxeL29gwZgMkiNkg+tTcbuODjHurO+g36shRoGXt9XTfqSfZXMK\nI34IXk5u2dwi9jR2sqVaf7DJUX7tvWitXQGsOO65h4Z8Xc/RYcfjtQMzzyagBNa+pk72NnVx+4IS\np6MElWn5Kaw7cJg9DZ1MyU92Oo44qKKxk3UHWjhvfCZF6RpWlJO7emYe33phO09vqGZmUarTcSQI\n6E80+ZDXygc3uNZ8rg8Zk5VIXJSGGCNdb7+XZzZWk5kYHZHbY8npSY6N4vKpuTy3qZbeAa/TcSQI\nqHTJh7xW3sCUvGRNDD6O22WYkp/Mjrp2BjTEGLFWbq+nrbufGzSsKH5aNreQtiP9f9lWTSKb3jXk\nL5o7e1lfeVh3LZ7E9IIUegd87GnsdDqKOGBvUydr97ewaGwGJRkJTseREHHuuExyk2O1ZpcAKl0y\nxBs7GrEWla6TGJOVQGyUSwulRqDeAS/PbKgmIyGaS6fkOh1HQojbZfj4nAL+vFtrdolKlwzxankD\nBalxTNVE8RPyuFxMyUtmR72GGCPNq9sbaO3u5/o5hUR79LYpp+eGOUfX7HpuY63TUcRhevcQAI70\neXm3oolLJmdH7AbX/phWkEJPv4+KJg0xRop9zZ2s2XeIBWMzGJ2pYUU5feOyE5ldnMpT67VmV6RT\n6RIA3tnTRE+/T0MnpzAuK5HYKBdbte5OROgb8PHMhhrSE6K5XP825Cwsm1vIroYOttW0Ox1FHKTS\nJcDRuxaTYj2cMyayN7g+FY/bxZS8FMrr2rVQagR4rbyelq4+rp9doGFFOStXz8gn2uPi6Q2aUB/J\n9C4i2uD6NM0oHLyLsUFDjOHs4KEuVu89xDmj0xmTleh0HAlxKXFRXDYlhz9tqtGaXRFMn7DChkpt\ncH06xmYlEh/tZktNq9NRZIT0e308tb6a1PgorpimYUUZHsvmFtLa3c+bO7VmV6RS6RJeK28gym24\nUBtc++XoXowp7KzroG9AQ4zh6LXyBg519fHx2YXEeNxOx5Ewcd74LHKSY7RmVwRT6Ypw1lpeG9zg\nOkkbXPttRmEKfV4fuxo6nI4iw6zyUBfvVTQzf1Q647I1rCjDx+0yXDe7gDd3NdHU0et0HHGASleE\n29vUyf7mLi7T0OJpGZ2ZQGKMhy3VGmIMJ/1eH09vqCE5TsOKMjKWHVuza1ON01HEASpdEe5VbXB9\nRlzGMK0ghV31HfT2a1JsuHitvIGmzl6un11AbJSGFWX4jc9JYmaR1uyKVCpdEe618gamF6SQlxLn\ndJSQM6MghQGfZUe9hhjDwb6mTt6raOac0emMz0lyOo6EsWVzC9lZ38H2Wq3ZFWlUuiJYY0cPm6pa\nddfiGSrOiCc51sNWDTGGvJ5+L09tqCYtIZql0/KcjiNh7poZeUS7XZpQH4FUuiLYKm1wfVZcxjCj\nMJXdDZ0c6dMQYyhbsbWOtu5+bpyrvRVl5KXGR3PplBye31yrO6AjjN5dIthr5Q0UpsUxKVdDKWdq\nekEKXmspr9O2QKFqR107ZQcPc/6ELEoytLeiBMayuYW0dPXx5i6t2RVJVLoiVFfvAO9WNHPplBxt\ncH0WCtPiSE+IZnOVSlco6uwd4JmNNeSlxHLx5Gyn40gEOW98JllJWrMr0qh0Rah39jTRN+DT0OJZ\nMsYwqyiVvU2dtB3pdzqOnAZrj96239PvZdncQjwuvR1K4HjcLq6fXcCbOxtp7tSaXZFC7zIR6tXy\nBlLiopg/Shtcn61ZRalY0JpdIWZTVSvba9u5dHKO7t4VRyybW8iAz/LsBq3ZFSlUuiLQgNfHGzsb\nuWhSNh5tcH3WMhNjKEqLY2OlSleoaO3u44UttZSkx7N4fKbTcSRCjc9JYnZxKo+XVWnNrgihT9wI\nVHbwMK3d/RpaHEazitOob++hru2I01HkFHzW8syGGny+o1caXJrTKA66ubSIisZONuiPtoig0hWB\nXitvINrt4vwJ2uB6uMwoSMFljg5ZSXBbu7+FiqZOrpyeR0ZijNNxJMJdPTOf+Gg3T5ZVOR1FAkCl\nK8Ic2+B60bgMEmM8TscJGwkxHibkJLG5qhWvT8MEwaqpo5eV2+qYkJPIvFFpTscRITHGw1XT83hh\ncy1dvQNOx5ERptIVYbbXtlPZ0s0VU7WZ73CbVZRKe88A7+875HQUOYHeAS/L11US5XZx/ZxCLZUi\nQeOmeUV09Xl5aWud01FkhKl0RZiV2+pxuwyXqXQNu8l5ycR4XDyjO5GC0vdX7qKurYdlcwpJjo1y\nOo7IX5SWpDEmK4En1mmIMdypdEUQay0rttaxYEw66QnRTscJO1FuF9MKUli5rU7bAgWZt3Y18qt3\n97NgTAaT8pKdjiPyIcYYbiotouzgYSoaO52OIyNIpSuC7G7oZF9zlzb0HUGzi1Lp6vPyanm901Fk\nUFNHL195cjOTcpNYOk1XeCU4XT+nALfLaEJ9mFPpiiArttZhDFyuocURMyozgYLUOJ7QG2dQ8Pks\n//TkZjp6BvjJJ2YTpXXpJEhlJ8WyZGI2T2+opt+rTbDDlV/vQMaYK4wxu4wxFcaY+07w+iRjzBpj\nTK8x5iunc64Ezsvb6pg/Kp2sJN0mP1JcxnDzvCLeqzhE5aFup+NEvF+/t5+3dzfxL1dPYXyONnaX\n4HbLvCKaO/tYtaPB6SgyQk5ZuowxbuBBYCkwBfiEMWbKcYe1AF8CfnAG50oAVDR2sLvh6NpEMrJu\nLC3EZeDxskqno0S0bTVt3L9yJ5dNyeG2c4qdjiNyShdOzCIvJZbH1uq9I1z5c6VrPlBhrd1nre0D\nlgPXDj3AWttorV0HHL/j7ynPlcB4eevROUZXaE7LiMtLiePCidk8WVbNgIYJHNHVO8CX/riRjIQY\n7r9hhpaHkJDgcbu4eV4R7+xp1pXyMOVP6SoAhk5QqR58zh9nc64MoxXb6iktSSMnOdbpKBHhlnlF\nNHb08uauJqejRKRvvbCd/Ye6+H83zyRNd+pKCLl5XhEuA39cp6td4ShoZpUaY+42xpQZY8qamvRB\nNZz2N3exo66dpRpaDJiLJmWTnRTD43rjDLgXt9TyRFk1X7hwLIvGajNrCS15KXFcNCmHJ8uq6BvQ\nlfJw40/pqgGKhjwuHHzOH36fa6192Fpbaq0tzcrSnoDD6eVtR1c51tBi4HjcLpbNLeSNnY3Ut/U4\nHSdiVLV08/VntjKrKJV/vGSC03FEzsht5xTT3NnHa+WaUB9u/Cld64DxxpjRxpho4BbgeT+//9mc\nK8Pk5a31zCxKpSA1zukoEeXmeUX4LDy1XstHBELvgJcvPLYBgAdu0fIQErrOn5BFQWocf/jgoNNR\nZJid8l3JWjsAfBF4BdgBPGGt3W6MuccYcw+AMSbXGFMNfBn4v8aYamNM8snOHalfRj5qf3MXW2va\nuFpDiwFXkpHAorEZPF5WhU+bYI+47760g601bfzgxpkUZ8Q7HUfkjLldf1165kBzl9NxZBj59aeg\ntXaFtXaCtXastfa7g889ZK19aPDremttobU22VqbOvh1+8nOlcB5flMtxsDVM1W6nHDL/GKqWo7w\n3t5mp6OEtRc21/LomoN8dvFoLf4rYeHmeUW4XYY/fqB5oeFE19/DmLWW5zbXcM7odPJSNLTohMun\n5pCREM2jazRMMFL2NnVy39NbmFOcyteWTnI6jsiwyEmO5eJJ2Ty5vpreAe3lGi5UusLY9tp29jV1\nce0srdLhlBiPm9vOKeb1HQ0aJhgBR/q83PvYBqI9Ln566xzN45Kw8skFJbR09bFia53TUWSY6B0q\njD23qYYot9Emvw775IISPC7DI6sPOB0lrFhrue+ZLexq6OB/bp5Fvm4UkTCzeFwmY7ISeGS1rpSH\nC5WuMOX1WZ7fXMsFE7JJjdfikE7KTo7lmhn5PFlWRXvP8Zs2yJn6zXsHeG5TLV++ZAIXTsx2Oo7I\nsHO5DHcsKGFzVSubqlqdjiPDQKUrTH2wv4WG9l6unZXvdBQBPnPuaLr6vDyxTstHDIf39x3iuyt2\ncOmUHO5dMs7pOCIj5oa5hSREu/mtrpSHBZWuMPX85hrio91cMjnH6SgCTC9MYf6odB5ZfQCvlo84\nK3VtR/jiHzZQkh7PD2+aiculfRUlfCXFRrFsbiEvbqmlqaPX6ThyllS6wlDfgI8VW+u5fGoucdFu\np+PIoDsXj6L68BFeK693OkrI6un3cs/vN3Ckz8vDd8wlOTbK6UgiI+6ORaPo91qWa/mIkKfSFYbe\n3t1E25F+PqahxaBy6ZRcCtPi+PW7B5yOEpKstXzj2a1srmrlhzfNZFx2ktORRAJibFYi543P5Pdr\nD9Lv1X6MoUylKww9t7mW9IRoFo/TZr/BxO0yfHrRKD440MLW6jan44Sch9/exzMbavjHS8ZzxTQt\n9iuR5VMLR9HQ3ssr23WlPJSpdIWZ9p5+Xiuv56rpeVqzKAjdNK+IpBgPP/9zhdNRQsqqHQ18b+VO\nrpqRxz9cPN7pOCIBt2RSNkXpcZpQH+L0qRxmnt9US0+/jxtLC52OIieQHBvFZ84dxYqt9eysb3c6\nTkjYVd/Bl/64kWn5Kfxg2UyM0cR5iTxul+FTC0ex7sBhtlRr+YhQpdIVZp4sq2JSbhLTC1KcjiIn\ncefi0STFeHhg1R6nowS95s5ePvvoOhJiPPzijlLdGCIR7aZ5RSTGeHj47X1OR5EzpNIVRnbWt7O5\nuo2bSot0NSCIpcZH/+Vq1446Xe06mSN9Xu76bRlNHb08fEcpuSmxTkcScVRybBS3nlPMiq11VLV0\nOx1HzoBKVxh5Yl010W4XH5+tvRaDna52/W1en+VLyzeypbqVB26ZzayiVKcjiQSFz5w7Cpcx/Ord\n/U5HkTOg0hUmege8PLuxmkun5JCWoG1/gt2xq10vb9PVruNZa/nWC9t5rbyBf79mKpdN1d6hIsfk\npcTxsVn5PL6uitbuPqfjyGlS6QoTq3Y0cri7XxPoQ4iudp3YL97Zx6NrDvK580bzqUWjnI4jEnTu\nPn8MR/q9/P59bYQdalS6wsTj66rIS4nlvPFZTkcRPw292lVeq6tdAM9sqOY/V+zkqul5fH3pZKfj\niASlSbnJXDAhi0dWH6Sn3+t0HDkNKl1hoLb1CG/vaWLZ3ELc2ocupNy1eAxJsR7+c8UOrI3sPRlf\n3V7PV5/awqKxGdpTUeQU7j5/DM2dvTy7scbpKHIaVLrCwNPrq7EWbpxb5HQUOU0p8VF8+dIJvFvR\nzCvbG5yO45jVFc188Y8bmVaQwsN3lBIbpaUhRP6WRWMzmJqfzC/e2YfPF9l/sIUSla4Q5/VZnlhf\nxcIxGRRnxDsdR87A7QtKmJiTxH+8VB6RQwWbqlr57KNljMqI55FPzyMxxuN0JJGgZ4zhngvGsq+p\ni5e3aWugUKHSFeLe3NlIVcsRPrmgxOkocoY8bhf//rGpVB8+wkN/3ut0nIAqr23n07/5gIzEaH53\n1zm681bkNFw5PY+xWQn8eNVuXe0KESpdIe6R1QfIS4nlsqk5TkeRs7BwbAZXzcjj52/tpfpwZCx6\nuL22jVt/+T5xUW4eu2sBOcla/FTkdLhdhi9dPJ7dDZ2s1EbYIUGlK4Ttaejg3YpmPrmgRJtbh4Fv\nXDkZY+C7L+1wOsqI21bTxq2/WEt8lJvldy/Q0LjIGbp6Rj5jshJ4YNUeXe0KAfqkDmGPrD5AtMfF\nJ+YXOx1FhkFBahz3XjiOl7fV8/buJqfjjJhtNW3c9su1JMZ4WH73QkoyEpyOJBKy3C7Dly4az876\nDl4t19WuYKfSFaLauvt5ZkMN183KJ13zYMLG584fw5isBP75qS0c7gq/1abXHzw8pHDpCpfIcLhm\nZj5jMhP48aoKXe0KcipdIeqJsiqO9Hu1YneYiY1y88AtsznU1cvXn9kaVmt3vbmrkdt++T5p8VEs\nv3sBRekqXCLDwe0yfPGiceyoa+e1HZG79EwoUOkKQV6f5bdrDjB/dDpT81OcjiPDbFpBCl+5bCIr\nt9fz+Loqp+MMi2c3VvO535YxLjuRJ+9ZpMIlMsw+NjOfURnx/Ph1ze0KZipdIWjVjgaqDx/hM7rK\nFbY+d94Yzh2XwbdeKGdfU6fTcc7KL9/Zx/95fDPzR6fzx88tICspxulIImHH43bxpYvHU17Xzotb\n65yOIyeh0hWCfvPeAfJTYrl0ipaJCFcul+GHN84iJsrFPyzfRN+Az+lIp63f6+Obz27lP17awVXT\n8/jNZ+aRFBvldCyRsHXtrAIm5yXz36/spHcg8hZaDgUqXSFmQ+Vh1uw7xKfPHYVHy0SEtdyUWL53\n/Qy21rTxb89vC6n5XS1dfXzyl2t5bG0l91wwlgc+MZsYj7b2ERlJbpfhG1dOoqrlCL9bc9DpOHIC\nfn1qG2OuMMbsMsZUGGPuO8HrxhjzwODrW4wxc4a8dsAYs9UYs8kYUzac4SPRT1btIS0+itvO0Qr0\nkeCKabncu2Qsf/ygih+v2uN0HL/squ/g2gffZWNVKz+6eRb3LZ2kjdhFAuS88VmcNz6Tn7xRQVt3\nv9Nx5DinLF3GGDfwILAUmAJ8whgz5bjDlgLjB//nbuDnx72+xFo7y1pbevaRI9fW6jbe3NXEZ88b\nQ4L2p4sYX7lsIjfOLeRHr+/hsbXB/dfrMxuq+fjP3qO338cTn1/IdbMLnI4kEnG+vnQy7T39/Oyt\nCqejyHH8+eSeD1RYa/cBGGOWA9cC5UOOuRZ41B4d/3jfGJNqjMmz1mo23zB64I09JMd6uGOhrnJF\nEmMM/3X9dA519fEvf9pGZmIMl0/NDcjP/sPaSr+O6+n38vzmWjZVtTIqI4Gb5xVRXttOeW37CCcU\nkeNNyU/m+tmF/Gb1AW5fWEJhmu4WDhb+DC8WAEPvW68efM7fYyzwujFmvTHm7jMNGul21LXzWnkD\ndy4ercnIEcjjdvHTW2czozCVL/1xY1CtWF/V0s1P36xgc1Url0zO5rPnjSYlTv8/KuKkr1w+AQP8\n4JVdTkeRIQIxE3uxtXYWR4cg7zXGnH+ig4wxdxtjyowxZU1NwfOBEix++kYFiTEePrNotNNRxCHx\n0R5+/el5jM5M4DOPrOPRNQcczdM74OXlrXX879t78fksd58/hosm5eAymr8l4rS8lDjuWjyaP22q\nZf3BFqfjyCB/SlcNUDTkceHgc34dY6099t9G4FmODld+hLX2YWttqbW2NCsry7/0EaKisYMV2+r4\n1KISUuJ1BSGSpSdE89TfLeLCCVn863Pb+Zc/bWPAG/jlJMpr2/nR63t4p6KZuSVp/P1F47WHokiQ\nuXfJOPJSYvnms9vod+B9Qj7Kn9K1DhhvjBltjIkGbgGeP+6Y54E7Bu9iXAC0WWvrjDEJxpgkAGNM\nAnAZsG0Y80eEn75RQVyUm7sWj3E6igSBxBgPD99RyufPH8Pv3j/Ip3+zjkOdvQH52fVtPTy65gC/\nX3uQuCg3nz9/DB+fXUhctJaDEAk2CTEe/v1jU9lZ38Ej7x1wOo7gx0R6a+2AMeaLwCuAG/i1tXa7\nMeaewdcfAlYAVwIVQDfwmcHTc4BnzdHhBg/wB2vtymH/LcLYtpo2nttcy93nj9HG1vIXbpfh61dO\nZmx2It98ditLfvAW/3jJBG5fWELUCKzfVtd2hDd2NrK9tp0Yj4srpuZy7rhMLQUhEuQum5LDxZOy\n+Z/Xd3PVjDzyU+OcjhTR/Fp3wFq7gqPFauhzDw352gL3nuC8fcDMs8wYsay1fOfFctLio7l3yTin\n40gQuqm0iNlFqXz7xXK+/WI5f/ygkn+9ZgrnjT/7IfoBr49d9R2sO9BCed3RsrVkYhbnjsskPlpL\nloiEAmMM//6xqVz6P3/mWy9s539v18pNTtI7ZxB7ZXs9a/e38J3rppGsOxblJMbnJPHonfN5fUcj\n//FSObf/6gOm5CVzzcx8rpmZd1q3i3t9lvLadp7bVMOfNtXS3NlLXJSbJROzOXdchsqWSAgqSo/n\nHy6ewP0rd/J6eQOXaAs5x+gdNEj1Dnj5zxU7mZCTyCfmFZ36BIloxhgunZLD+RMyeXxdFc9sqOH+\nlTu5f+VO5hSnMrMolZL0eEoyEihKj8Na6OwdoKvXS9uRfrbXtrGxspUt1a109XmJchsumpRNVmIM\nE3KT8Li05ZRIKLtr8Wie2VDNvz2/nQVjM0jUAtuO0P/Wg9RvVx+gsqWb3945X3ssit9iPG7uWDiK\nOxaOovJQNy9sqeWV7fUs/6CKI/0n3wDX4zJMzkvmhrmFzC5O5cIJ2aQlRPu9OKqIBLdoj4v/un46\nN/3vGr79wna+v0wzf5yg0hWEDnX28pNVFSyZmMUFE7R8hpyZ4ox47l0yjnuXjMNaS1NnL5WHuqk+\nfASXy5AY4yYh2kNirIexWYnERukORJFwVjoqnb+7cCwPvrmXiyblcMW0wOxsIX+l0hWE/uf13XT3\ne/nmVZOdjiJhwhhDdlIs2UmxlI5yOo2IOOUfLp7An3c38fVntjCnOJXs5FinI0UUjVsFmXUHWnhs\nbSW3LyhhXHaS03FERCSMRHtc/OjmWXT3efnqU1s4uviABIpKVxA50uflq09upiA1jq9ePtHpOCIi\nEobGZSfxjSsn8+fdTfzu/YNOx4koKl1B5Puv7OTAoW7+e9lMEnRniYiIjJA7FpZwwYQsvvvSDrbV\ntDkdJ2KodAWJtfsO8cjqA3xqYQkLx2Y4HUdERMKYMYYf3DiT9IRoPv+79TQHaCuxSKfSFQS6+wb4\n6lNbKEqL52tLJzkdR0REIkBWUgwP315Kc2cvX3hsgzbFDgCVriBw/8s7qWzp5vvLZmjFbxERCZjp\nhSncf8MMPtjfwrdfKHc6TtjTJ7zDnttUw2/XHOTOc0ezYIyGFUVEJLCum11AeV07D7+9j6n5ydwy\nv9jpSGFLV7octL22ja89vYX5o9K5T8OKIiLikK9dMYnzxmfyL89t481djU7HCVsqXQ5p6erj7kfX\nkxYfzYO3zSHao/9TiIiIM9wuw4O3zWFCThL3/G497+875HSksKRPegcMeH3c+9gGmjp7+d/b55KV\nFON0JBERiXDJsVE8eud8itLjueuRdWyqanU6UthR6Qoway3/8dIO1uw7xH99fDozClOdjiQiIgJA\nRmIMj332HDISY/jUrz9gR12705HCikpXAFlr+cGru3hk9QHuWjyaG+YWOh1JRETkQ3KSY3nss+cQ\nF+Xm9l+tZWu1Fk8dLipdAfSj1/fw4Jt7+cT8Ir55pTazFhGR4FSUHs8fPncOMR43Nz+8hrc0uX5Y\nqHQFyE9W7eHHq/Zw49xCvnvddFwu43QkERGRkxqTlcizX1jEqIwE7vptGU+WVTkdKeSpdI0way0/\nfWMPP3xtN9fPLuB7N8xQ4RIRkZCQnRzL459fwKKxGXz1qS38+PU9+HzW6VghS6VrBPX0e/nKk1v4\nwau7uW5WPv9940zcKlwiIhJCkmKj+PWn53HDnEL+5/Xd3Pnbddqr8QxpRfoR0tjew92/W8+mqlb+\n8ZLxfOmi8brCFSH+sLbS6QgiIsMqyu3iBzfOYFZxKt95sZwrf/wOP7p5FovGZTodLaToStcI2FTV\nyjU/fZdd9R38/LY5/OMlE1S4REQkpBljuH1BCc/dey5JsR5u+9Vavr9yJz39XqejhQyVrmHU0+/l\nv1/ZyQ0/X02U28UzX1jE0ul5TscSEREZNpPzknnh7xdz49xCfvbWXi7/0du8sbPB6VghQaVrmJQd\naOHKB97hwTf3ct2sAl78+8VMzkt2OpaIiMiwi4/28P1lM/n9XefgcRnufKSMz/52HZWHup2OFtQ0\np+ss1bUd4YFVFSxfV0l+Shy/vXM+F0zIcjqWiIjIiFs8PpOX/+F8fvPefn68ag8X/7+3WDa3kHsu\nGEtJRoLT8YKOStcZqms7ws/f2svyD6qwWD6zaDT/dNkEEmL0v1IREYkc0R4Xn79gLNfOKuCnb+7h\nibJqHl9Xxcdm5vOFJeOYkJPkdMSgoYZwGqy1bKpq5YmyKp5eX4PFcmNpEV+4cCyFafFOxxMREXFM\nbkos/3HddL500Xh+8c4+fv9+JX/aVMuc4lRuLC3i6hl5JMVGOR3TUcba4FvkrLS01JaVlTkd4y8a\n2nt4blMNT5ZVs6exk9goF9fPKVTZGkZaZkFEwsGt5xQ7HSFotHT18dT6qg99dl4+NZeLJ+dwwfgs\nUuLDp4AZY9Zba0tPdZyudJ1A34CPDZWH+fPuJv68q4nywV3W5xSn8l/XT1dbFxEROYX0hGjuPn8s\nnztvDJur23iyrIoVW+t4blMtbpdhbnEaF0zMYk5xGjOLUoiPDv9K4tdvaIy5gv/f3p3HWFmdcRz/\n/mZhhmXYLKAFOmMFQTCKQVFLatVWxaW1TUyxdeliQ220LtEYjU2a9o/GxtRWa6211tiFWptiW2NV\nNNBxFmYAAAjHSURBVIqxoSIoi4JAiloFKx1lH2AYZubpH++BjhSYa4T3vd77+yQ3ee8577nnOUyA\nZ8577jlwO1AL3BsRt+xRr1R/DrAN+GpELCylbZEigo3bdvLG+m2sXLuZl9ZsYulbm1i+dgsdnd3U\n1YjJzUO4Ydo4zpxwKGOGDyg6ZDMzsw8VSUwaPZhJowfz/fOPZvHqjcxZ0crTK1q5dfZKAGprxLgR\nTRw7ehBjhjdxxLD+jBk+gI8O6ltR+1z2mnRJqgV+BpwBrAEWSHo4Il7pcdvZwNj0OhH4OXBiiW1z\nd/OfX2bx6o28uX4bW9o7d5c3NdQxceRAvnJyM5ObhzJ1zCGe0TIzMztAatNkxuTmIVx/1jg2bO1g\n8eqNLHpzA4tWb+SxpWvZuO1/B2v3qathxMAGDh3YyIiBjQxraqCpsZ6BjXU0NdbRr08ddTWipkbU\npeRsR2c3HZ3d7OjsIgIunFI+j3xLmemaAqyKiNcAJP0BOB/omTidD/wmsgVi8yQNlnQY0FJC29xt\n6+hiWFMDk5uH8LGh/fjY0H6MHdFE89B+FZVRm5mZlbMh/ftw2vjhnDZ++O6ydW07ePWdraxqbeON\ndVtZu7mdtZvaWfrWJt5t66BtR+d+PvG9GupqPnRJ10hgdY/3a8hms3q7Z2SJbXP34+mTig7BzMzM\n9uKQAQ0cMqCBKYcP3Wt9V3fQtqOTLe072d7RRVcEnV1BV3cQQGN9DQ11tTTU1dCnrrz2gC+bVWuS\nZgAz0ts2SSuLjMdy9xHg3aKDyFk1jhmqc9zVOGaownFfVHQAVpTmUm4qJel6Cxjd4/2oVFbKPfUl\ntAUgIu4B7ikhHqtAkl4o5eu2laQaxwzVOe5qHDNU77jN9qWUebcFwFhJh0vqA1wIPLzHPQ8Dlypz\nErApIt4usa2ZmZlZxet1pisiOiVdCcwm2/bhvohYJunyVH838CjZdhGryLaM+Nr+2h6UkZiZmZmV\nsZLWdEXEo2SJVc+yu3tcB3BFqW3N9qIaHy1X45ihOsddjWOG6h232V6V5TFAZmZmZpWmvL5LaWZm\nZlahnHRZoSRNk7RS0ipJNxYdTx4k3SepVdLSomPJi6TRkuZIekXSMklXFx1THiQ1SpovaUka9/eK\njikvkmolLZL0SNGxmJULJ11WmB7HRJ0NTAC+JGlCsVHl4n5gWtFB5KwTuC4iJgAnAVdUyc96B3B6\nRBwLTAKmpW94V4OrgeVFB2FWTpx0WZF2HzEVER3ArmOiKlpEPAusLzqOPEXE2xGxMF1vIfvPeGSx\nUR18kWlLb+vTq+IX0koaBZwL3Ft0LGblxEmXFWlfx0dZBZPUAhwHPF9sJPlIj9kWA63AkxFRDeP+\nCXAD0F10IGblxEmXmeVG0gBgFnBNRGwuOp48RERXREwiO5FjiqSji47pYJJ0HtAaES8WHYtZuXHS\nZUUq5YgpqxCS6skSrpkR8VDR8eQtIjYCc6j89XxTgc9J+hfZkoHTJf2u2JDMyoOTLiuSj4mqEpIE\n/ApYHhG3FR1PXiQNkzQ4XfcFzgBWFBvVwRURN0XEqIhoIfs7/XREXFxwWGZlwUmXFSYiOoFdx0Qt\nB/5YDcdESXoAeA4YJ2mNpMuKjikHU4FLyGY9FqfXOUUHlYPDgDmSXiL7JePJiPAWCmZVyjvSm5mZ\nmeXAM11mZmZmOXDSZWZmZpYDJ11mZmZmOXDSZWZmZpYDJ11mZmZmOXDSZWZmZpYDJ11m9oFI6kr7\nbi2TtETSdZJqUt3xku7YT9sWSV/OL9r/63t7OhexLEiaLmmVJO/lZVaBnHSZ2Qe1PSImRcREsh3X\nzwa+CxARL0TEVftp2wIUknQlr6ZzEUsmqfZgBRMRDwLfOFifb2bFctJlZgdMRLQCM4ArlTl116yN\npE/12I1+kaQm4Bbgk6ns2jT79HdJC9PrE6ntqZKekfQnSSskzUxHCyHpBEn/SLNs8yU1SaqVdKuk\nBZJekvTNUuKX9BdJL6ZZuxk9ytsk/UjSEuDkffQ5MV0vTn2OTW0v7lH+i11Jm6RpaYxLJD11AH8M\nZlam6ooOwMwqS0S8lhKL4XtUXQ9cERFzJQ0A2oEbgesj4jwASf2AMyKiPSUtDwDHp/bHAROBfwNz\ngamS5gMPAtMjYoGkgcB24DJgU0ScIKkBmCvpiYh4vZfwvx4R69M5iQskzYqIdUB/4PmIuC6dE7pi\nL31eDtweETPTPbWSjgKmA1MjYqeku4CLJD0G/BI4JSJelzT0ff9Bm9mHjpMuM8vLXOA2STOBhyJi\nTZqs6qkeuFPSJKALOLJH3fyIWAOQ1mG1AJuAtyNiAUBEbE71ZwLHSLogtR0EjAV6S7qukvSFdD06\ntVmXYpmVysfto8/ngJsljUrj+6ekTwOTyRI4gL5AK3AS8OyuJDAi1vcSl5lVACddZnZASfo4WZLS\nChy1qzwibpH0N+Acspmns/bS/FrgP8CxZMsf2nvU7ehx3cX+//0S8O2ImP0+4j4V+AxwckRsk/QM\n0Jiq2yOia3/tI+L3kp4HzgUeTY80Bfw6Im7ao6/PlhqXmVUOr+kyswNG0jDgbuDOiIg96o6IiJcj\n4ofAAmA8sAVo6nHbILJZpG7gEqC3ResrgcMknZD6aJJUB8wGviWpPpUfKal/L581CNiQEq7xZLNR\nJfeZks3XIuIO4K/AMcBTwAWShqd7h0pqBuYBp0g6fFd5L7GZWQXwTJeZfVB90+O+eqAT+C1w217u\nu0bSaUA3sAx4LF13pQXq9wN3AbMkXQo8DmzdX8cR0SFpOvDTtA5rO9ls1b1kjx8XpgX37wCf72Uc\njwOXS1pOlljNe599fhG4RNJOYC3wg7Q+7DvAE8q20dhJtq5tXlqo/1AqbyX75qeZVTDt8cuomVlV\nkNQCPBIRRxccynukx5y7v1xgZpXDjxfNrFp1AYNUZpujks32bSg6FjM78DzTZWZmZpYDz3SZmZmZ\n5cBJl5mZmVkOnHSZmZmZ5cBJl5mZmVkOnHSZmZmZ5eC/W3z+KSI2W4EAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(hsc_wide['hsc-wide_ra'], hsc_wide['hsc-wide_dec'])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: MergeConflictWarning: Cannot merge meta key 'EXTNAME' types and , choosing EXTNAME='/Users/rs548/GitHub/dmu_products/dmu1/dmu1_ml_XMM-LSS/data_tmp/HS...' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-27T11:26:18' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'EXTNAME' types and , choosing EXTNAME='/Users/rs548/GitHub/dmu_products/dmu1/dmu1_ml_XMM-LSS/data_tmp/HS...' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-27T11:26:18' [astropy.utils.metadata]\n" + ] + } + ], + "source": [ + "# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, hsc_wide, \"hsc-wide_ra\", \"hsc-wide_dec\", radius=0.8*u.arcsec)\n", + "master_catalogue = merge_catalogues(master_catalogue, hsc_deep, \"hsc-deep_ra\", \"hsc-deep_dec\", radius=0.8*u.arcsec)\n", + "master_catalogue = merge_catalogues(master_catalogue, hsc_udeep, \"hsc-udeep_ra\", \"hsc-udeep_dec\", radius=0.8*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add DECaLS" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl81dWd//HXyc2+73tCAoQl7DsiKKAguFGt1daqrbVj\nbbXbdDq1v9namWmny9hVW2utbadqayvWFRQXEERl3wOBECD7vkBCyHbP748Eh6EiAb/J996b9/Px\nyMPce7/J98MV7n3fc873c4y1FhERERH58ILcLkBEREQkUChYiYiIiDhEwUpERETEIQpWIiIiIg5R\nsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAFKxERERGHKFiJiIiIOCTYrRMnJyfbvLw8t04v\nIiIiMmDbtm1rsNamnO8414JVXl4eW7dudev0IiIiIgNmjDk2kOM0FSgiIiLiEAUrEREREYcoWImI\niIg4RMFKRERExCEKViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERhyhY\niYiIiDhEwUpERETEIQpWIiIiIg4JdrsAGXpPbiobkvPcOid3SM4jIiLiKzRiJSIiIuIQBSsRERER\nhyhYiYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAFKxER\nERGHKFiJiIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEAUr\nEREREYcMKFgZY5YZY4qNMSXGmPvf5/E4Y8wLxphdxph9xpg7nS9VRERExLedN1gZYzzAQ8ByoBD4\nhDGm8KzD7gWKrLVTgIXAA8aYUIdrFREREfFpAxmxmg2UWGtLrbVdwJ+AFWcdY4EYY4wBooEmoMfR\nSkVERER83ECCVRZQfsbtiv77zvQgMB6oAvYAX7bWeh2pUERERMRPOLV4/SpgJ5AJTAUeNMbEnn2Q\nMeZuY8xWY8zW+vp6h04tIiIi4hsGEqwqgZwzbmf333emO4FnbJ8S4Agw7uxfZK19xFo701o7MyUl\n5WJrFhEREfFJAwlWW4ACY0x+/4L0jwPPn3VMGXAFgDEmDRgLlDpZqIiIiIivCz7fAdbaHmPMfcAr\ngAd4zFq7zxhzT//jDwP/AfzOGLMHMMA3rLUNg1i3iIiIiM85b7ACsNauAladdd/DZ3xfBSx1tjQR\nERER/6LO6yIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERhyhYiYiIiDhE\nwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAFKxERERGHKFiJiIiI\nOETBSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEAUrEREREYcoWImI\niIg4RMFKRERExCEKViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERhyhY\niYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAFKxERERGH\nKFiJiIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEAUrERER\nEYcoWImIiIg4RMFKRERExCEKViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsR\nERERhyhYiYiIiDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAF\nKxERERGHKFiJiIiIOGRAwcoYs8wYU2yMKTHG3H+OYxYaY3YaY/YZY950tkwRERER3xd8vgOMMR7g\nIWAJUAFsMcY8b60tOuOYeOAXwDJrbZkxJnWwChYRERHxVQMZsZoNlFhrS621XcCfgBVnHXMr8Iy1\ntgzAWlvnbJkiIiIivm8gwSoLKD/jdkX/fWcaAyQYY9YZY7YZY+5wqkARERERf3HeqcAL+D0zgCuA\nCOAdY8y71tqDZx5kjLkbuBsgNzfXoVOLiIiI+IaBjFhVAjln3M7uv+9MFcAr1tp2a20DsB6YcvYv\nstY+Yq2daa2dmZKScrE1i4iIiPikgQSrLUCBMSbfGBMKfBx4/qxjngPmG2OCjTGRwBxgv7OlioiI\niPi2804FWmt7jDH3Aa8AHuAxa+0+Y8w9/Y8/bK3db4x5GdgNeIFHrbV7B7NwEREREV8zoDVW1tpV\nwKqz7nv4rNs/BH7oXGkiIiIi/kWd10VEREQcomAlIiIi4hAFKxERERGHKFiJiIiIOETBSkRERMQh\nClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEAUrEREREYcoWImIiIg4RMFKRERE\nxCEKViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERhyhYiYiIiDhEwUpE\nRETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAFKxERERGHKFiJiIiIOETB\nSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEAUrEREREYcoWImIiIg4\nRMFKRERExCEKViIiIiIOUbASERERcYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERhyhYiYiI\niDhEwUpERETEIQpWIiIiIg5RsBIRERFxiIKViIiIiEMUrEREREQcomAlIiIi4hAFKxERERGHKFiJ\niIiIOETBSkRERMQhClYiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLiEAUrEREREYco\nWImIiIg4RMFKRERExCEKViIiIiIOUbASERERcciAgpUxZpkxptgYU2KMuf8DjptljOkxxtzkXIki\nIiIi/uG8wcoY4wEeApYDhcAnjDGF5zju+8Aap4sUERER8QcDGbGaDZRYa0uttV3An4AV73PcF4GV\nQJ2D9YmIiIj4jYEEqyyg/IzbFf33vccYkwXcAPzSudJERERE/ItTi9d/AnzDWuv9oIOMMXcbY7Ya\nY7bW19c7dGoRERER3xA8gGMqgZwzbmf333emmcCfjDEAycDVxpgea+2zZx5krX0EeARg5syZ9mKL\nlsHXcKKT/TXHGZ0aTUZchNvliIiI+IWBBKstQIExJp++QPVx4NYzD7DW5p/+3hjzO+DFs0OV+IfW\njm7eOFDHtmNNePujb1Z8BDNGJDAlO56IUI+7BYqIiPiw8wYra22PMeY+4BXAAzxmrd1njLmn//GH\nB7lGGQLdvV5e31/H24cbsBZm5ycxNz+Rkvo2th5t5vldVby8r4bPzMsjNynK7XJFRER80kBGrLDW\nrgJWnXXf+wYqa+2nP3xZMtRW763h3dJGpubEc+X4NBKjQgFIjQ3nkpFJVLWc4o9bynhycxn3LhpN\nTHiIyxWLiIj4HnVeF4prTvBuaSOXjkri5pk574Wq04wxZCVE8Mk5uXR09/Lk5jJ6vB94nYKIiMiw\npGA1zLV19vDM9grSYsNYOiH9A4/NiIvgxunZHGs8yao9NUNUoYiIiP9QsBrGrLU8u6OSk9293Dwz\nhxDP+f86TMmOZ/7oZN4tbWT7seYhqFJERMR/KFgNY9uONVNUfZyrCtMuqKXCVRPSGZkSxbM7K2ls\n6xzECkVERPyLgtUw1dzexYu7qxmZEsW80ckX9LOeIMPNM/tam60tVqNXERGR0xSshqn1h+rptZab\npmcT1NfY9YLEhocwJz+RneXNGrUSERHpp2A1DJ3s7GF7WTNTc+KJjww9/w+cw4IxKQQZw7qDGrUS\nEREBBath6d0jTXT3WuZf4BTg2WLDQ5iVl8iOsmaa2rscqk5ERMR/KVgNM6e6e3mntJExadGkxYZ/\n6N932ZgUjDG8ebDOgepERET8m4LVMPPsjkraO3tYUJDiyO+LiwhhVl4C244103xSo1YiIjK8KVgN\nI16v5dG3jpAZF87IZOf2+7usIAWD4U1dISgiIsOcgtUwsu5gHSV1bcwvSMZcxJWA5xIfGcqM/lGr\n1o5ux36viIiIv1GwGkYeWV9KRlw4k7LiHf/dC0Yn02stO8rUjV1ERIYvBathYm9lK++WNvGZS/Px\nBDk3WnVaUnQY+clRbDvWjLXW8d8vIiLiDxSsholntlcS6gl6r2P6YJiRm0BjexdHG08O2jlERER8\nmYLVMNDrtbywu4qFY1OIiwwZtPNMzIojNDiIbdqcWUREhikFq2Hg3dJG6k90smJq1qCeJzQ4iMlZ\nceytbKWzu3dQzyUiIuKLFKyGged2VhIdFswV41MH/VwzRyTQ1etlT2XroJ9LRETE1yhYBbhT3b2s\n3lvDVRPSCQ/xDPr5chIjSY4O03SgiIgMSwpWAW5dcT0nTvWwYmrmkJzPGMPMEQkcazpJaX3bkJxT\nRETEVyhYBbjnd1WSHB3KvFFJQ3bOqbnxBBn4y7aKITuniIiILwh2uwAZPCdOdfPa/jpunZ1LsGfo\nMnRseAhj0mJYua2Cry0ZM6TnFhFxw5ObyobkPLfOyR2S88jF0zteAHtlXy1dPV6uH6JpwDNNz02g\n7kQn75Q2Dvm5RURE3KJgFcCe21lJTmIE03Kc38LmfMamxxAV6mHVnuohP7eIiIhbFKwCVP2JTjaW\nNLBiSpajGy4PVIgniCvGp/HKvlp6er1Dfn4RERE3KFgFqDVFNXgtXDdl6KcBT7t6UjpN7V1sOtLk\nWg0iIiJDScEqQL1WVMuIpEjGpEW7VsPCsalEhnp4SdOBIiIyTChYBaD2zh42Hm7kyvFprkwDnhYe\n4mHxuFRe2Vuj6UARERkWFKwC0IZDDXT1eLlyfJrbpXD1pAwa27vYfFTTgSIiEvgUrALQa/triYsI\nYWZegtulsGhsKhEhujpQRESGBwWrANPrtbxxoI5FY1MI8YHGnBGhfdOBL++tpddr3S5HRERkULn/\nziuO2l7WTFN7F1cWuj8NeNrySek0tHWyWVcHiohIgFOwCjCvFdUS4jFcPibF7VLes3hcKuEhQaze\nq+lAEREJbApWAebV/bXMHZlETHiI26W8JzI0mEVjU1m9t0bTgSIiEtAUrALI4fo2SuvbWeJD04Cn\nLZ+UQf2JTraXNbtdioiIyKBRsAogr++vBeAKH2izcLa+xfSGV4tq3S5FRERk0ChYBZDXiuoozIgl\nKz7C7VL+Rkx4CHNHJrFmXw3WajpQREQCk4JVgGhq72LrsSafuhrwbEsnpHO08SQldW1ulyIiIjIo\nFKwCxLriOrwWrhyf6nYp57Skf4pyjaYDRUQkQAW7XYA4Y11xPcnRoUzMjHO7lHNKjwtncnYcrxbV\ncu+i0W6XIyLDwJObytwuQYYZBasA0Ou1bDhUz6JxqQQFubfp8kAsGZ/GA68epO74KVJjw90uR0SG\noY6uXlo7umnv6qG9s4f2rl68XkuoJ4iQ4CBCPYbYiBDSYsN9YgcL8S8KVgFgd0ULzSe7WTjWd6cB\nT1s6IZ0HXj3Ia/vruHVOrtvliEiAO97RzZHGdqpaOqg9fora4520dnQP6GcNkBITRmZ8BPnJUUzK\niiM8xDO4BYvfU7AKAOuK6wkysGB0stulnNeYtGhyEyNZU1SjYCUijmtq7+LNg3W8XdLI5qNNHGs8\nCUBwkCElJoz85CjSYsNJjAolKtRDZFgwUaEePEGG7l5Ld4+Xrl4vTe1dVLeeorq1g9L6NnaWt/DC\nrirGZ8QyPTee0akxeHx8hkDcoWAVANYdrGdKTjwJUaFul3JexhiWFKbxh3eO0dbZQ3SY/gqKyMWz\n1lJce4JX99WytriOHeUtWAvxkSHMyktkQkYseclRZMRFXFAQyoyPYGJW3HvnqGzpYEdZC7sqWthT\n2UpiVChXT0xnfEYsxihgyf/Su5qfa2zrZHdFC1+5YozbpQzYksI0fvPWEdYfrOfqSRlulyMifuhg\n7Qle3F3NS7urOFzfDsDk7Di+tLiAReNSmZwVR1CQcWTxujGG7IRIshMiWT4pnQPVJ3htfy2Pbypj\nZEoU10zKICPO9/oHijsUrPzchkMNWAsLx/rOpsvnM3NEAvGRIbxaVKtgJSIDVlLXxku7q3lpTxUH\na9swBubkJ/LpS/O5akIaqTGDf0FMcFAQE7PiGJ8Ry+ajTbxWVMuDb5Qwb1QSV01MJzhIi92HOwUr\nP7euuI6kqFAmZflum4WzBXuCuGJcGq8W1dDd69VVNyLDzIWMIrV2dLOjrJndFa3UHD+FAUYkRXHd\nlEwmZsa+t+H8a0V1g1Tt+/MEGS4ZmcTU7HjWFNWw8XAjFS0d3Do7972aZHhSsPJjXq9l/aEGLh+T\n4vNtFs62pDCNldsr2HKkiXl+sOheRIZOV4+XoupWth9r4XB9GxbITYzk2skZTMyMIzbCd4JLRKiH\nFVOzyEuK4pkdFTy4toRPzs4lNynK7dLEJQpWfmx3ZStN7V1+NQ142mVjkgkLDmJNUa2ClYhgreVo\n40m2lzWzt7KVzh4vCZEhLBqXyvTcBBJ9/OKcKTnxpMaG8cSmMn694QgfmZbJjBGJbpclLlCw8mPr\niuswBhYU+F+wigwNZv7oZF4tquXfrivUVTUiw1RTexc7yprZUd5CU3sXoZ6+NUzTR8STlxRFkB+9\nNmTERXDvwtH8cUsZK7dXYi3MzFO4Gm4UrPzYuuJ6pmTH+/wnuXNZOiGN1w/Usb/6BIWZsW6XIyJD\npLO7l71VrWwva+FIQzsGyE+J4opxqUzIjCM02H/XXUaEerh97ggef/cYf91RSVCQYXpugttlyRBS\nsPJTTe1d7Kpo4ctXFLhdykVbPC4NY/awpqhGwUokwHm9lndKG1m5rYIXdlfR3WtJigplSWEa03Li\niY/0zw+I7yfEE8Rtc0fwP+8cZeW2CjzGMCUn3u2yZIgoWPmpDYfq+9ss+P42NueSEhPG9NwEXi2q\n5StX+k8fLhEZuCMN7azcVsFfd1RS2dJBTFgwU3MSmJ4bT25iZMAuAwjxBHH73Dx+/85R/rKtHE+Q\nea/hqAQ2BSs/ta64nsSoUCb7+T/UJYVpfG/1ASpbOsiKV4M9kUDQ2tHNS7urWbm9gm3HmgkyML8g\nhW8sH8fSwjSe2V7pdolDIjQ4iDsuGcFvNx7lz1vLSYwKJVOvcwFPwcoPeb2W9QfrWVCQ7HdtFs52\nOli9VlTLp+bluV2OiFykXq9lw6F6Vm6v5JV9NXT1eClIjeb+5eO4YVoWabGD37zTF4UFe7ht7gge\nWlvC45uOce/C0URpK6+Apv+7fmhvVSuNftpm4WyjUqIZlRLFqwpWIn7pcH0bf9lawTPbK6g70Ulc\nRAgfn5XDR6dnMzk7LmCn+i5EdFgwn5yTyyPrS/njljLunJevDZwDmIKVH1pXXI8xcJkftll4P0sK\n03l0QymtHd3E+VDjPxF5f22dPby0u4o/b+2b6vMEGRaOSeGmGdksHp9KWLDH7RJ9TnZCJB+ZlsXT\n2yp4eW8110zOdLskGSQKVn5oXXEdk7PiSIoOc7sURywpTOPhNw+zrriOFVOz3C5HRN6HtZbNR5r4\n89YKVu2ppqO7l1EpUXxz+ThumJ41JPv0+bvpuQlUtnSw8XAjmfERTFMbhoCkYOVnWk52sbO8hfsW\n+2+bhbNNy4knOTqMNUW1ClYiLnq/PfxaO7rZXtbMtmPNNLV3ERYcxOTsOGaMSCQnIQJjzJDv0+fP\nrp6YQXXLKZ7bVcWIpCi/7UMo56Zg5WfWH2rAawmI9VWnBQUZlhSm8sKuajp7ejWNIOKynl4vRdXH\n2XasmZK6vr368pMDo4Gn2zxBhptnZvPT1w/x9LZyPrtgpF91l5fzU7DyM+uK60iIDGFKdmA1m1ta\nmM4fN5fz9uFGFvlxby4Rf1bV0sHWY83sKm+ho7uXuIgQFo5NZcYI39+rz5/ER4Zy3eRMnt5ewcaS\nBr/clkzOTcHKj/xvm4WUgLuiZN7oJGLCgnl5T42ClcgQau3o5tkdlTy1pZyi6uMEBxkKM2OZMSKB\nUSnRGk0ZJNNy4ymqPs6aoloK0mJIH6btKAKRgpUf2Vd1nIa2wGizcLawYA+Lx6eypqiG7/ROJNij\nqQaRwWKtZUd5C09uKuPF3VWc6vYyMSuW66ZkMiU7jshQvTUMNmMMH5mWxU9fO8jTW8u5Z+EogoP0\nuhcIBvR/0RizzBhTbIwpMcbc/z6Pf9IYs9sYs8cY87YxZorzpcq64r4FopeNCbxgBbBsQjrNJ7vZ\nfKTJ7VJEAtLxU9384Z2jLP/pBm78xdus3lPNDdOyeeG++bz4xQVcMjJJoWoIRYcFc8O0bKpaT7H2\nQL3b5YhDzvsvyBjjAR4ClgAVwBZjzPPW2qIzDjsCXG6tbTbGLAceAeYMRsHD2bqD9UzOjiM5QNos\nnO3ysSmEhwSxem8N80Ynu12OiM94v6v1BspaS0VzB1uONrGrooXuXktmXDgrpmYyNTuesBAPeypb\n2VPZ6mDFMlCFmbFMzYln/cF6pmTHkaopQb83kI8ms4ESa20pgDHmT8AK4L1gZa19+4zj3wWynSxS\n+tos7Chr5t5Fo90uZdBEhgazcEwqr+yr4dvXT/D77XpE3NTZ3cvOihY2H2miuvUUIR7DlOx4Zucn\nkhUfoY7oPuTqSRkU15zguV1VfHZ+vv7f+LmBBKssoPyM2xV88GjUXcDqD1OU/K1AbLPwfpZPSufl\nfTXsKG9mxohEt8sR8Ts1x0/x7uFGdpa30NXrJSMunOunZDI1J57wELUy8UXRYcFcNSGdZ3dWsrO8\nRY1D/Zyjk+nGmEX0Bav553j8buBugNzcXCdPHfDe2F9LYlQoU3MC+x/c4nGphHqCWL2nRsFKZIB6\nvZYDNcd553AjpQ3tBAcZJmfHMyc/kewEjU75g5l5CWw71sSqPdWMS48lIlQh2F8NZPF6JZBzxu3s\n/vv+D2PMZOBRYIW1tvH9fpG19hFr7Uxr7cyUlMAeeXFST6+XdQfrWTg28NosnC0mPIT5Bcms3luD\ntdbtckR82snOHt48WM8Da4p5YlMZTe1dXDUhnfuXjeOmGdnkJEYqVPmJIGNYMTWLk129vLKvxu1y\n5EMYyIjVFqDAGJNPX6D6OHDrmQcYY3KBZ4DbrbUHHa9ymNtR3kLLyW6uGJfmdilDYtmEdN44UMfe\nyuNMyo5zuxwRn1Pd2sHbhxvZVd5Cj9cyMjmKayZnMC49NuA/fAWyzPgI5o1K4u3DjcwYkUBOYqTb\nJclFOG+wstb2GGPuA14BPMBj1tp9xph7+h9/GPhXIAn4Rf+nox5r7czBK3t4eX1/HcFBhgVjhseV\ncksK0/D81bB6b7WClUg/ay0ldW1sKGmgpK6NEI9hem4Cc0clqblkALlyfBp7Klt5blclX1g4Wg1a\n/dCA1lhZa1cBq8667+Ezvv8s8FlnS5PTXt9fy+z8RGLDQ9wuZUgkRIUyd2QiL++t4etXjdVUhgxr\nXT1eth9r5q2SBmqOnyImPJirCtOYnZ+kdTgBKCzEw7KJGfx5azk7ylqYMSKw19UGIrV59XFljSc5\nVNfGFeOHxzTgacsmZlDa0M6BmhNulyLiitaT3fxiXQnzv/8GT2+vAOCm6dl8/aqxXD42VaEqgE3J\njiMnIYI1+2ro7Ol1uxy5QApWPu6NA7UAXDFueO2ft3xiOp4gw3M7q9wuRWRIlTed5FvP7+OS773O\nD14uZmx6DHfOy+OLi0czfUSCtj0ZBowxXDM5kxOdPaw/qI7s/kZ7F/i41w/UMTIlirzkKLdLGVLJ\n0WEsKEjmhV1V/ONVY9UsVALejrJmHt1whNV7q/EEGa6fksVnF+QzPiP2Q3VeF/+UmxjJlOw4Nhxq\nYGZeIgmRoW6XJAOkYOXD2jp72FTaxKfmjXC7FFd8ZGoWX3lqJ1uPNTM7Xz2tJPBYa1l/qIGH1paw\n+UgTMeHB3H3ZKD49L4/0OC1IH+6umpBOUfVxXtlXw8dnqfejv1Cw8mFvHaqnq9fL4mHSZuFsSwrT\niAjx8OzOSgUrCSher2VNUQ0PrT3MnspWMuLC+ZdrC7llVg7RYXpZlj7xkaEsKEjhjQN1XDKynRFJ\nw2vmwl9pst6Hvb6/jtjwYGbmDc+rQqLCgllSmMaqPdV09XjdLkfkQ+vp9fLM9gqW/mQ99zy+nROn\nuvn+Ryfx5tcXcdf8fIUq+RuXFaQQGx7MS3uq1TTZT+hfsY/yei1ri+u4fGwqIZ7hm38/Mi2T53dV\nsf5gPVcWDs+RO/FdA1371N3rZXtZM+sP1tN8spv02HBumZXDxMw4er3w9LaKQa5U/FVocBBLCtNY\nub2SPZWtbpcjA6Bg5aN2VbTQ0NbF4nHDe+ufBQUpJEaF8uzOSgUr8TudPb1sPtLEWyUNnDjVQ05C\nBNdOzmRseowaP8qATctNYGNJI2uKavn3FV5Cg4fvh21/oGDlo17eW0NwkGHx2OEdJkI8QVwzKYO/\nbCunrbNHUyXiFzq6enm7tIG3Sxrp6O5lZEoUN8/MYWRylBreygULMoZlE9P53dtHefzdY3xmfr7b\nJckH0LuUD7LWsnpvDfNGJxMXOTy6rX+QFVMz+cO7x1izr4Ybp2e7XY7IOZ041c3GkgbePdJEV4+X\ncekxLBybSq72fJMPqSA1mlEpUfz8jUN8dEY2cRF6b/BVGk/0QUXVxylrOsnVE9PdLsUnzBiRQHZC\nBM+qWaj4qOaTXTy/q5IfvlLMhkMNjEuP4YuLR3PHJXkKVeIIYwzLJ2bQfLKbX6477HY58gE0YuWD\nVu+pIcj0tRuQvheUFVMz+eW6w9SdOEVqjPr7iG+oP9HJmwfr2VnejMEwLTeey8akkBwd5nZpEoAy\n4yO4YVoWj208wu2XjCArPsLtkuR9aMTKx1hrWbW3mrkjk0jSi/N7Pjo9G6+Fv2zV1VPivn1Vrdz7\nxHZ+8tpB9lS2MGdkEl9bOoYbp2crVMmg+trSMQA8sKbY5UrkXDRi5WMO1bVRWt/OnfPy3C7Fp4xM\nieaSkUmhRwTqAAAbEUlEQVT8cXMZn798lLa4EVdsO9bEg2+UsLa4npiwYC4bk8Klo5N1UYUMmeyE\nSO6cl8cjG0q5a34+EzLj3C5JzqIRKx+zek8NxvRtZSD/1yfn5lLR3MH6Q9qUVIaOtZb1B+u55Vfv\n8NFfvsOuilb+YekY3rp/MVdNSFeokiH3hUWjiYsI4XurD7hdirwPvSL4mNV7q5k5IoHUWK0jOtvS\nwnSSo0N5YlMZC8emul2OBLieXi+r9tbwqzcPs6/qOOmxfdvOfGJ2DpGheukU98RFhHDfotH850v7\nWX+wnsvGDO9+h75Grw4+5EhDOwdqTvCv1xa6XYpPCg0O4mMzc3hkfSnVrR1kxGnhpjjvVHcvT2+r\n4JH1pZQ1nWRkShQ/+OhkVkzLJCzY43Z5IgDcfskIfv/OUb67aj+Xjk7Go+URPkNTgT5k9d5qAJap\nzcI5fWJWLr1ey1Nbyt0uRQJMa0c3D60tYf733+Cfn91LQlQoD982g9e+ejk3z8pRqBKfEhbs4etX\njeNAzQn+uqPS7XLkDBqx8iGr99QwNSeeTF1Ce065SZFcNiaFp7aUc9+i0QQP430UxRm1x0/x2FtH\neGJTGW2dPVw2JoXPXz6KuSMT1SVdfNq1kzL4zYZSHlhTzLWTMwgPUfj3BXpX8hHlTSfZU9nKco1W\nndets3Opbj3F2mItYpeLV1rfxv0rd7Pg+2v59YZSFo9L5aUvzed/PjObS0YlKVSJzwsKMnzz6vFU\nt57isY1H3C5H+mnEykc8t7NvKPfqSRkuV+L7rhifSlpsGE9uOqYmqnJBrLVsPtLEb946wqv7awn1\nBHHzrGzuXjCK3CR1SBf/M3dkEleOT+WXaw9zy8wc9T/0AQpWPsBay8rtlczJTyRH21+cV4gniFtm\n5vDztSUca2xnRFKU2yWJD3lyU9nf3NfT62V3ZStvlzRQ1XqKiBAPlxekcMmoJGLCQ3irpAFKXChW\nxAH3Lx/H0h+v5+dvlPCt6ye4Xc6wp6lAH7C9rJkjDe3cNEMbDA/UbXNHEBIUxMNvlrpdiviwts4e\nXj9Qyw9eKebpbRV0ey0fmZrFN5aNY+mEdGLCtZGt+L/RqTHcMiuXx989xtGGdrfLGfY0YuUDnt5W\nSUSIh+WaBhyw1NhwPjYzm79sreDLVxSQHqe+X/K/qls7ePtwI7vKW+jxWsakRXPpqGRGp0Zr7ZQE\npK8uKeC5nX0bgT/0yelulzOsacTKZae6e3lxdxXLJ6qD84W65/JR9FrLoxs0aiV9/5ae2V7BL9eV\n8PM3Sthd0cL0EQl85YoCPj0vn4K0GIUqCVipMeH83YKRvLSnmu1lzW6XM6zpndxla4pqOXGqh49q\nGvCC5SRGsmJKJk9sKuMLi0aTGBXqdknigmON7TyxqYy/bC2n+WQ3ydGhXD0pg+m58eqQLsPK3ZeN\n5IlNZfzXqv38+XOX6IOES/Sq47KV2yrIjAvnkpFJbpfilz6/cBTP7KjkdxuP8PdLx7pdjgyRnl4v\nbxyo4/FNZaw/WI8nyLC0MI3b5o7gaEO73lBkWIoKC+arSwr4p7/uZU1RrfacdYmClYtqj59iw6F6\nvrBwNEHajuCiFKTFsGxCOr97+yh/d9lILUYOcEcb2vnz1nJWbq+g9ngnabFhfOXKAj4+K/e9dXbH\nGk+6XKWIe26ZmcNvNx7lv1btZ+HYFO0Y4AIFKxf9dUclXgs3Ts9yuxS/9oVFo3h5Xw2Pv1vG5xeO\ncrsccdjJrh5W76nhqa3lbD7SRJCBhWNT+fb1OVw5PlXd90XOEOwJ4l+vLeSOxzbz6IYj3LtotNsl\nDTsKVi6x1rJyWwXTc+MZmRLtdjl+bXJ2PAsKkvnNW6V8at4IrasJANZadlW08tSWcl7YVUVbZw95\nSZF8/aqx3DQjm7RYXQUqci6XjUlhaWEaD75Rwo3Ts7Rh/RDTRz2X7Cxv4VBdGzfNyHG7lIDw5SsK\naGjrUl8rP1fedJKH1paw5Mfr+chDG/nrjgqWTkjjqbvnsvYfFnLvotEKVSID8C/XFuK1lu+uOuB2\nKcOOPtq75LcbjxIdFsx1U9S7ygkz8xK5fkomD795mI/NyFYHex/0fh3RATq6etlT2crO8maO9q+P\nykuK5CNTs5icHUd4iIfD9e0crlfjQ5GBykmM5HOXj+Jnrx/itjm5zNEFUkNGwcoF1a0drNpTzafn\n5WmxtYO+efU4Xi2q5Tsv7efh22e4XY58gJ5eLwdqTrCzvIXi2hP0ei0p0WEsLUxjSnY8CWqdIfKh\nff7yUazcVsG/Pb+PF784X+sRh4iClQt+//YxvNbyqXl5bpcSUDLiIrhv8Wh++Eoxbx1qYH5Bstsl\nyRm81nKs8SQ7y5vZU9nKqW4v0WHBzM1PZGpuAplx4WqTIOKgiFAP/3TNeL7wxHae2FSm95whomA1\nxNo7e3hy0zGWTUzXdNUguGt+Pk9tKefbL+xj1ZcXEKJPaK6y1rKv6jgv7K7iqc3ltHR0E+IxTMiM\nY2pOPKNSovGo1YjIoFk+MZ35o5P54SvFLJ2QpoXsQ0DBaoit3F7B8VM93DU/3+1SAlJ4iId/ubaQ\nv/ufrfzhnWN8Rs/zkLPWcqDmBC/uruKl3dUcbTxJcJBhZEoUSyekMT4jVr11RIaIMYbv3DCRq36y\nnn95di+/vmOmRoYHmYLVEPJ6Lb/deJSpOfFMz01wu5yAdeX4VBYUJPPj1w5y9aQMbdA8RA7VnuDF\n3dW8uLuKw/XtBBmYNyqZz10+imUT0lm9t8btEkWGpRFJUfz9kjF8d9UBXtpTzbWTM90uKaApWA2h\nNw7UcaShnZ9/Ypo+MQwiYwzfvn4C1/78Lb70px08+dk5WrQ5SI40tPPiripe3F1Nce0JjIHZeYl8\n+tJ8lk9MJzk6zO0SRQT4zKX5vLCrmm89v49LRyXrApFBpGA1hH7z1hEy48JZPlH7Nw22kSnR/OdH\nJvL3f97Fz14/pH0EHXS4vo2X99bw0u5qiqqPAzBzRALfuq6QqydlkKo+UyI+J9gTxPc/OpnrH3yL\n/3xpPw/cPMXtkgKWgtUQ2V3Rwjuljfy/q8dp9GSI3Dg9m7cPN/LztSXMGZnEpaN1leDFsNZSVH2c\nV/bWsHpvDYfq2gCYmhPPP18znmsmZ2hBrIgfKMyM5XOXj+ShtYdZMTWTy8akuF1SQFKwGgLWWr63\n+gCJUaF8Ynau2+UMK/++YgI7y1v48p92surL80mN0WjKQHi9lp0VLby8t4aX99ZQ1nSSIAOz8xP5\n5JxCrpqYrjAl4oe+uLiA1Xtr+MbK3az+8gLiIzUl6DQFqyHw5sF63j7cyLeuK1RD0CEWGRrMQ7dO\n5/oH3+KrT+3k93fO1ojhWU53RO/1Wo42trOv6jhFVa0cP9WDxxhGpUZxw7QsxmfEEh3W95Kx9kC9\nmyWLyEUKD/Hw01umceMvN/KNlbt5+LYZWvPrMAWrQdbr7RutGpEUya1zRrhdzrA0Nj2G/1gxkX9c\nuZuv/WUXP7p5qnon9evq8VJcc4J9Va0UVR/nZFcvIR5DQWoMEzJjGZceS0SoWiOIBJJJ2XH841Xj\n+M6q/TyxqYzb5uq9yUkKVoPsrzsqOVBzggdvnUZosEZK3HLzrBwa2jv5wcvFBAcF8cObJhM0TMNV\nW2cPGw7W88q+Gl4/UMeJUz2EBQcxNj2GiZlxjEmL0d9VkQB31/x81h+q5z9eLGJ2fiJj0mLcLilg\nKFgNolPdvTywppgp2XFcM2n4bbZ8rk13B8Otc86/du0LC0fT02v50asHCQ4y/NeNk4ZNuKpq6eD1\n/bW8tr+Odw430tXrJSEyhOUT0wkP8TA6JVpTpCLDSFCQ4YGbp3D1TzfwpT/u4Nl7LyU8RKPTTlCw\nGkS/e/so1a2n+NHNUzWH7SO+dEUB3b1efv5GCR6P4T9WTAzIacHTW8m8WlTLa/tr2VfV1xYhPzmK\nT1+ax5Xj05ieG0+wJ2hIA7CI+I7UmHB++LEp3PnbLXz7hX1894ZJeq9ygILVIGlq7+KhtSUsHpfK\nJaOS3C5HzvD3S8bQ3Wt5+M3DHG1o5ye3TA2I3kudPb28c7iR1/bX8vr+OqpbT2FMX4+pby4fx5WF\naYxKiXa7TBHxIYvGpvL5haP45brDjEmL4c5LtQ3Yh6VgNQistfzTX/dwqruX+5ePc7scOYsxhm8s\nG8vIlCj+9bm9XP2zDfz4lqksKPCdni4DHUVqbOvkUF0bh+raOFzfRleP973F5/NGJTM2Pea9K/k2\nlTaxqbRpMMsWET/09aVjOVzXxn+8WERechSLxqa6XZJfU7AaBM9sr2T13hruXz5OCwJ9lDGGm2fm\nMC0nni88sZ07HtvM5y8fxRcXF/j0VXCd3b2UNrRzsPYEh+raaGrvAiAhMoSp2fGMz4hhZEo0IVov\nJSIDFBRk+PEtU/nYw+/wxSd3sPLz8xibrveui6Vg5bDyppP82/P7mJ2XyN8tGOl2OXIeBWkxPH/f\nfP7t+b38Yt1h/ry1gvsWjeITc3IJC3Y/YHX29FLe1MGxxnZKG9opazxJr7WEeAwjk6OZNyqJMakx\nJEWHam2EiFy0qLBgfvPpmax4cCN3/X4Lz957qfb6vEgKVg7q9Vq+9pddADxw85SAXBQdiCJCPfzg\npil8bGYO//1KMd96oYhH1pfyhUWjuW5KJnERQ9fUtf5EJ9uONfHS7iqONp6kurUDrwUDZMSFc+no\nZArSohmRGKmr+ETEURlxEfz6jpnc/Kt3uPO3W3j8rjnERaqp9YVSsHLQoxtK2Xykif/+2BRyEiPd\nLkcu0Ky8RP5091w2ljTy32uK+edn9/LtF/Yxf3QyV0/KYGlhuqMvMg1tnRRVHaeo+jhFVcfZU9nK\nkYZ2AIKDDDmJkVw2JoW8pChyEyN1KbSIDLopOfE8fNsMPveHbXzyN+/y+F1ztO3NBVKwcsi2Y808\nsOYgyyak89HpWW6XIxfJGMP8gmQuHZ3EzvIWVu+t4aXd1awt3s0/mt2MSIykMDOW8emxFKT1TcHF\nR4QQFxlCdFgwvV5LT6+l2+uls9tLQ1snDW1dNLR1UtN6imON7RxpPMnRhnZaO7rfO29WfASFmbF8\nfFYOs/IT2VvZSnCQRqREZOgtGpfKr27vD1ePbuKJzypcXQgFKwccqDnOnb/dTGZ8ON+9UX1AAoEx\nhmm5CUzL7WtVsLuilTcP1lNUdZx9VcdZtafmIn4nZMZFkJ8cxbWTM8hPjqIwM5bCjNi/edE6UH3C\nqT+KiMgFWzQulV/d0Reubv11X7hKiFK4GggFqw+pvOkkd/xmMxGhHv5w1xwS9Rcv4BhjmJITz5Sc\n+Pfua+vs4Uh9Oy0dXbSc7Kalo5v2zh6Cg0zflyeIsOAgkqPDSI4OIyk6lKToUJ9YEC8iMhCLxqby\nyO0zuPsP2/joL9/mkTtmMjpVvfDOR8HqQ6g/0cntv9lEZ4+XP3/uEq2rGkaiw4KZlB3ndhkiIoNq\n4dhUHr9rDp9/fBs3PLSRn3x8KleMT3O7LJ+mYHWRGts6+dRjm6k93snjn52jnh/DhLZ/EZHhZnZ+\nIs9/cT6f+8NWPvs/W/n7K8dw3+LRWvZyDgpWF2FPRSuf+8NWGtq7eOT2GcwYkeB2ScOeAo+IyODJ\nio/g6Xvmcf/K3Tzw6kG2lTXznRsmkRUf4XZpPkeXHV2gv2wt56MPv40xhpX3zGOhWv+LiMgwEB7i\n4ce3TOXb109g85EmlvzoTR576wi9Xut2aT5FwWqAOrp6+dfn9vL1p3czc0QCz993qdbYiIjIsGKM\n4VPz8ljz1cuYk5/Iv79YxI2/2MjO8ha3S/MZmgo8D6/X8uzOSn7wcjE1x0/xdwvy+caycep6LSIi\nw1Z2QiSPfXoWL+6u5tsv7OMjD23ksjEpfHHxaGblJbpdnqsUrD7Au6WNfOel/eypbGVydhw/+8Q0\nZucP778wIiIi0Dd6dd2UTBaNS+Xxd4/x6IZSPvbwO8zJT+Qz8/NZNDaV0ODhNwihYHWW5vYunttZ\nyZ+3VlBUfZyMuHB+fMsUVkzJIkh7/4mIiPwf0WHB3HP5KD51SR5/2lLGr94s5XN/2EZ8ZAjXTMrg\nhmlZzBiRMGyuIhxQsDLGLAN+CniAR6213zvrcdP/+NXASeDT1trtDtc6KKy1VDR38M7hRt48WM+r\nRbV09XqZmBXLv6+YwMdm5BARqqaOIiIiHyQi1MOdl+Zz29wRvHWogb/uqGTl9gqe2FRGcnQol4xK\nZt6oJOaNSiI3MTJgg9Z5g5UxxgM8BCwBKoAtxpjnrbVFZxy2HCjo/5oD/LL/vz6lp9dLRXMHJXVt\nHK5vo7jmBJuONFHZ0gFAcnQot87J5WMzs5mQqYXpIiIiFyrEE8SicaksGpdKW2cPa/bVsOFQAxtL\nGnhhVxUAiVGhjEuPYWx6DOPTY8lLjiIzPpy02HBC/HwN80BGrGYDJdbaUgBjzJ+AFcCZwWoF8D/W\nWgu8a4yJN8ZkWGurHa94gMqbTvKz1w9R39bZtxHuib6NcHvOuCw0JSaMWXkJfO7ykcwdmURBanTA\nJmgREZGhFh0WzI3Ts7lxejbWWkob2nn7cCP7KlvZX3OCP20up6O7973jgwykxYaTHB1GfGQIcRF9\nX1FhwYQFBxEe4iHUE8Tpt2prwWIpzIhjfkGyS3/K/2sgwSoLKD/jdgV/Oxr1fsdkAa4Fq65eLxsO\nNZASE0ZKdBjj02NJiQkjPzmKUanRjEqOJi4yxK3yREREhhVjDKNSohmV8r/7DXq9lrKmk5Q1naSq\npYOqlg4qW07R1N5JS0c3lc0dNJ/soqO7l84eL/YcLbNum5vrV8HKMcaYu4G7+2+2GWOKh/L88p5k\noMHtIvyAnqfz03M0MHqeBkbP03l80u0CfNR3+r8G2YiBHDSQYFUJ5JxxO7v/vgs9BmvtI8AjAylM\nBo8xZqu1dqbbdfg6PU/np+doYPQ8DYyeJwkEA1khtgUoMMbkG2NCgY8Dz591zPPAHabPXKDVzfVV\nIiIiIm4474iVtbbHGHMf8Ap97RYes9buM8bc0//4w8Aq+lotlNDXbuHOwStZRERExDcNaI2VtXYV\nfeHpzPsePuN7C9zrbGkyiDQdOzB6ns5Pz9HA6HkaGD1P4veMPdcSexERERG5IP7dhUtERETEhyhY\nDSPGmGXGmGJjTIkx5n636/FVxpjHjDF1xpi9btfiq4wxOcaYtcaYImPMPmPMl92uyRcZY8KNMZuN\nMbv6n6dvu12TrzLGeIwxO4wxL7pdi8iHoWA1TJyxNdFyoBD4hDGm0N2qfNbvgGVuF+HjeoCvWWsL\ngbnAvfr79L46gcXW2inAVGBZ/5XT8re+DOx3uwiRD0vBavh4b2sia20XcHprIjmLtXY90OR2Hb7M\nWlt9eqN1a+0J+t4Qs9ytyvfYPm39N0P6v7Sw9SzGmGzgGuBRt2sR+bAUrIaPc207JPKhGGPygGnA\nJncr8U39U1w7gTrgVWutnqe/9RPgHwGv24WIfFgKViJy0Ywx0cBK4CvW2uNu1+OLrLW91tqp9O1I\nMdsYM9HtmnyJMeZaoM5au83tWkScoGA1fAxo2yGRgTLGhNAXqp6w1j7jdj2+zlrbAqxF6/fOdilw\nvTHmKH1LFBYbYx53tySRi6dgNXwMZGsikQExxhjgN8B+a+2P3K7HVxljUowx8f3fRwBLgAPuVuVb\nrLXftNZmW2vz6HtdesNae5vLZYlcNAWrYcJa2wOc3ppoP/Bna+0+d6vyTcaYPwLvAGONMRXGmLvc\nrskHXQrcTt/ows7+r6vdLsoHZQBrjTG76ftw86q1Vu0ERAKYOq+LiIiIOEQjViIiIiIOUbASERER\ncYiClYiIiIhDFKxEREREHKJgJSIiIuIQBSsRERERhyhYich5GWN6+3tV7TPG7DLGfM0YE9T/2Exj\nzM8+4GfzjDG3Dl21f3Pujv69+nyCMeYWY0yJMUb9rEQCkIKViAxEh7V2qrV2An3dw5cD/wZgrd1q\nrf3SB/xsHuBKsOp3uH+vvgEzxngGqxhr7VPAZwfr94uIuxSsROSCWGvrgLuB+0yfhadHX4wxl5/R\niX2HMSYG+B6woP++r/aPIm0wxmzv/5rX/7MLjTHrjDFPG2MOGGOe6N86B2PMLGPM2/2jZZuNMTHG\nGI8x5ofGmC3GmN3GmM8NpH5jzLPGmG39o293n3F/mzHmAWPMLuCSc5xzQv/3O/vPWdD/s7edcf+v\nTgczY8yy/j/jLmPM6w7+bxARHxXsdgEi4n+staX94SH1rIf+AbjXWrvRGBMNnALuB/7BWnstgDEm\nElhirT3VH0z+CMzs//lpwASgCtgIXGqM2Qw8Bdxird1ijIkFOoC7gFZr7SxjTBiw0Rizxlp75Dzl\nf8Za29S/d98WY8xKa20jEAVsstZ+rX8/zQPvc857gJ9aa5/oP8ZjjBkP3AJcaq3tNsb8AvikMWY1\n8GvgMmvtEWNM4gU/0SLidxSsRMRJG4EfGWOeAJ6x1lb0DzqdKQR40BgzFegFxpzx2GZrbQVA/7qo\nPKAVqLbWbgGw1h7vf3wpMNkYc1P/z8YBBcD5gtWXjDE39H+f0/8zjf21rOy/f+w5zvkO8E/GmOz+\nP98hY8wVwAz6QhpABFAHzAXWnw561tqm89QlIgFAwUpELpgxZiR9QaQOGH/6fmvt94wxLwFX0zeC\ndNX7/PhXgVpgCn3LEU6d8VjnGd/38sGvUQb4orX2lQuoeyFwJXCJtfakMWYdEN7/8Clrbe8H/by1\n9kljzCbgGmBV//SjAX5vrf3mWee6bqB1iUjg0BorEbkgxpgU4GHgQXvWLu7GmFHW2j3W2u8DW4Bx\nwAkg5ozD4ugbDfICtwPnWyheDGQYY2b1nyPGGBMMvAJ83hgT0n//GGNM1Hl+VxzQ3B+qxtE3qjTg\nc/YHylJr7c+A54DJwOvATcaY1P5jE40xI4B3gcuMMfmn7z9PbSISADRiJSIDEdE/NRcC9AB/AH70\nPsd9xRizCPAC+4DV/d/39i8K/x3wC2ClMeYO4GWg/YNObK3tMsbcAvy8f11UB32jTo/SN1W4vX+R\nez3wkfP8OV4G7jHG7KcvPL17gee8GbjdGNMN1ADf7V+v9c/AGtPXgqKbvnVm7/Yvjn+m//46+q6o\nFJEAZs76wCkiEjCMMXnAi9baiS6X8n/0T0m+t6BfRAKHpgJFJJD1AnHGxxqE0jdq1+x2LSLiPI1Y\niYiIiDhEI1YiIiIiDlGwEhEREXGIgpWIiIiIQxSsRERERByiYCUiIiLikP8P5DWOM5grp/EAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(decals['decals_ra'], decals['decals_dec'])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, decals, \"decals_ra\", \"decals_dec\", radius=0.8*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add SpARCS" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HELP Warning: There weren't any cross matches. The two surveys probably don't overlap.\n" + ] + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(sparcs['sparcs_ra'], sparcs['sparcs_dec'])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: MergeConflictWarning: Cannot merge meta key 'EXTNAME' types and , choosing EXTNAME='/Users/rs548/GitHub/dmu_products/dmu1/dmu1_ml_XMM-LSS/data_tmp/Sp...' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-11-01T10:29:56' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'EXTNAME' types and , choosing EXTNAME='/Users/rs548/GitHub/dmu_products/dmu1/dmu1_ml_XMM-LSS/data_tmp/Sp...' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-11-01T10:29:56' [astropy.utils.metadata]\n" + ] + } + ], + "source": [ + "# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, sparcs, \"sparcs_ra\", \"sparcs_dec\", radius=0.8*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add SXDS" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HELP Warning: There weren't any cross matches. The two surveys probably don't overlap.\n" + ] + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(sxds['sxds_ra'], sxds['sxds_dec'])\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is strange that this does not peak at zero. This is bservable in the original band cross match. It implies there is a persistent offset. Perhaps each band should be astrometrically corrected before the original merge." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "sxds['flag_merged'].name = 'flag_merged_sxds'" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: MergeConflictWarning: Cannot merge meta key 'EXTNAME' types and , choosing EXTNAME='/Users/rs548/GitHub/dmu_products/dmu1/dmu1_ml_XMM-LSS/data_tmp/SX...' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-26T17:47:19' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'EXTNAME' types and , choosing EXTNAME='/Users/rs548/GitHub/dmu_products/dmu1/dmu1_ml_XMM-LSS/data_tmp/SX...' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-26T17:47:19' [astropy.utils.metadata]\n" + ] + } + ], + "source": [ + "# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, sxds, \"sxds_ra\", \"sxds_dec\", radius=0.8*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add DXS" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4XNd97vv3NzPolShEIwAS7L0XierFoXqxbMmypLhI\nshzbafaJ7ZtzU06SE/v6xDlRbEeWZbkoVrNJyYyKJUuiKrtYRLGTYAFAEJUEQIBoM+v+gRED0Swg\nuYENYL6f58FDzMwG9jsESLxYe81a5pwTAAAALlzA7wAAAADDBcUKAADAIxQrAAAAj1CsAAAAPEKx\nAgAA8AjFCgAAwCMUKwAAAI9QrAAAADxCsQIAAPAIxQoAAMAjIb9OnJOT40aPHu3X6QEAAPrs/fff\nr3fO5Z7tON+K1ejRo7V+/Xq/Tg8AANBnZnagL8dxKRAAAMAjFCsAAACPUKwAAAA8QrECAADwCMUK\nAADAIxQrAAAAj1CsAAAAPEKxAgAA8AjFCgAAwCMUKwAAAI9QrAAAADxCsQIAAPAIxQoAAMAjIb8D\nILY9ueag3xE8cffCEr8jAAAGAUasAAAAPEKxAgAA8AjFCgAAwCMUKwAAAI9QrAAAADxCsQIAAPAI\nxQoAAMAjFCsAAACPUKwAAAA8QrECAADwCMUKAADAIxQrAAAAj1CsAAAAPEKxAgAA8AjFCgAAwCMU\nKwAAAI9QrAAAADxCsQIAAPAIxQoAAMAjFCsAAACPUKwAAAA8QrECAADwCMUKAADAIxQrAAAAj1Cs\nAAAAPEKxAgAA8AjFCgAAwCMUKwAAAI9QrAAAADzSp2JlZkvMbKeZ7TGzb53i8Qwz+y8z22xmW83s\n895HBQAAGNzOWqzMLCjph5KukzRF0mfMbMpJh31F0jbn3ExJV0j6FzOL9zgrAADAoNaXEasFkvY4\n58qdc52SnpZ0y0nHOElpZmaSUiU1Sur2NCkAAMAg15diVSSpotftyuh9vf1A0mRJhyRtkfRnzrmI\nJwkBAACGCK8mr/+RpE2SCiXNkvQDM0s/+SAze9DM1pvZ+rq6Oo9ODQAAMDj0pVhVSSrudXtU9L7e\nPi9pmeuxR9I+SZNO/kTOuUedc/Occ/Nyc3PPNzMAAMCg1JditU7SeDMbE52Qfpek5Scdc1DS1ZJk\nZnmSJkoq9zIoAADAYBc62wHOuW4z+6qkVyQFJT3unNtqZg9FH39E0j9I+rmZbZFkkr7pnKvvx9wA\nAACDzlmLlSQ5516S9NJJ9z3S6/1Dkj7hbTQAAIChhZXXAQAAPEKxAgAA8AjFCgAAwCMUKwAAAI9Q\nrAAAADxCsQIAAPAIxQoAAMAjFCsAAACPUKwAAAA8QrECAADwCMUKAADAIxQrAAAAj1CsAAAAPEKx\nAgAA8AjFCgAAwCMUKwAAAI9QrAAAADxCsQIAAPAIxQoAAMAjFCsAAACPUKwAAAA8QrECAADwCMUK\nAADAIxQrAAAAj1CsAAAAPEKxAgAA8AjFCgAAwCMUKwAAAI9QrAAAADxCsQIAAPAIxQoAAMAjFCsA\nAACPUKwAAAA8QrECAADwCMUKAADAIxQrAAAAj1CsAAAAPEKxAgAA8AjFCgAAwCMUKwAAAI9QrAAA\nADxCsQIAAPAIxQoAAMAjFCsAAACPUKwAAAA8QrECAADwCMUKAADAIxQrAAAAj1CsAAAAPEKxAgAA\n8AjFCgAAwCMUKwAAAI9QrAAAADxCsQIAAPAIxQoAAMAjFCsAAACPUKwAAAA8QrECAADwCMUKAADA\nIxQrAAAAj/SpWJnZEjPbaWZ7zOxbpznmCjPbZGZbzewtb2MCAAAMfqGzHWBmQUk/lHStpEpJ68xs\nuXNuW69jMiX9SNIS59xBMxvZX4EBAAAGq76MWC2QtMc5V+6c65T0tKRbTjrmbknLnHMHJck5V+tt\nTAAAgMGvL8WqSFJFr9uV0ft6myBphJm9aWbvm9l9XgUEAAAYKs56KfAcPs9cSVdLSpK0ysxWO+d2\n9T7IzB6U9KAklZSUeHRqAACAwaEvI1ZVkop73R4Vva+3SkmvOOdanXP1kt6WNPPkT+Sce9Q5N885\nNy83N/d8MwMAAAxKfSlW6ySNN7MxZhYv6S5Jy0865reSLjGzkJklS1ooabu3UQEAAAa3s14KdM51\nm9lXJb0iKSjpcefcVjN7KPr4I8657Wb2O0kfSIpIesw592F/BgcAABhs+jTHyjn3kqSXTrrvkZNu\nf0/S97yLBgAAMLSw8joAAIBHKFYAAAAeoVgBAAB4hGIFAADgEYoVAACARyhWAAAAHqFYAQAAeIRi\nBQAA4BGKFQAAgEcoVgAAAB6hWAEAAHiEYgUAAOARihUAAIBHKFYAAAAeoVgBAAB4hGIFAADgEYoV\nAACARyhWAAAAHqFYAQAAeIRiBQAA4BGKFQAAgEcoVgAAAB6hWAEAAHiEYgUAAOARihUAAIBHKFYA\nAAAeoVgBAAB4hGIFAADgEYoVAACARyhWAAAAHqFYAQAAeIRiBQAA4BGKFQAAgEcoVgAAAB6hWAEA\nAHiEYoUhqTsS0aGjx3W0rVPhiPM7DgAAkqSQ3wGAc3Ho6HFtOHhEmyqOqq0zfOL+lPigslMTdPmE\nXE3KT5OZ+ZgSABCrKFYYEg42tOq3mw+puqldwYBpcn6aphSmq7PbqaW9S83t3SqvO6YnVh/Q2NwU\nXT+9QAUZSX7HBgDEGIoVBr1NFUe0dEOV0hNDumlmoWYWZSg54Q+/dcMRpzX7GvT69lr94I09mj8m\nSzdML1BckCveAICBQbHCoBVxTq9vr9WKnbUak5Oizy4oOWWh+kgwYLp4bI5mFWfq9R21WrW3QU1t\nXfrswhKFKFcAgAHATxsMSl3hiJ5ZV6EVO2s1t3SEPr949BlLVW/J8SHdNKNQt84q0s6aFj259qC6\nI5F+TgwAAMUKg5BzTr/dVKUtVU1aMjVft88uUihw7t+qC8Zk6eaZhdpxuEVPra2gXAEA+h3FCoPO\n2v2N2nDwqK6aNFKXTci9oFf4LSrL1k0zC7W9ulnPrKtQxLE0AwCg/1CsMKhUNLbphQ+qNSEvVVdN\nGunJ57yoLFs3TC/Q1kPNentXnSefEwCAU6FYYdBo7ejWk2sPKj0xpE/PK1bAw7WoLh6brelFGXpt\ne40qj7R59nkBAOiNYoVBIeKcnllXodaObt29sFTJ8d6+YNXMdOusIqUlxunZ9RXq7Ga+FQDAexQr\nDAor9zZoT90x3TyzUEWZ/bOwZ1J8UJ+aO0oNxzr10pbqfjkHACC2Uazgu5b2Lr2+vUYT89I0t3RE\nv56rLDdVl47P0dr9jdpe3dyv5wIAxB6KFXz3uw8PqzvidMOMggHZ4++aKXkqyEjU0g2Vau3o7vfz\nAQBiB8UKvjrQ0KqNFUd16bgc5aQmDMg5Q4GAPjWvWO1dYb2+o3ZAzgkAiA0UK/gmHHFavvmQMpLi\ndMVEb5ZW6Kv89ETNH52ltfsaVNvcPqDnBgAMXxQr+ObJtQdV3dSu66cXKD408N+KV0/OU3wooJc/\nPDzg5wYADE8UK/iisbVT/+eVnSrLTdG0wnRfMqQmhHTlxJHaWdOi3TUtvmQAAAwvFCv44sdv7VVL\ne5dumlE4IBPWT+eismxlpcTrxS3VCkfY7gYAcGEoVhhwDcc69MtVB3TzzELlpSf6miUUDGjJ1HzV\ntnRo/YFGX7MAAIY+ihUG3E/f3af27rC+etU4v6NIkqYWpmt0dop+v61G7V1hv+MAAIYwihUG1NG2\nTv1i5X5dP71A40am+R1HUs92N9dNy1dbZ1hr9jFqBQA4fxQrDKjH39uv1s6wvjZIRqs+UpyVrPEj\nU/Xu7jr2EQQAnDeKFQZM0/Eu/ey9fVoyNV+T8v15JeCZXDVppFo7w1q3n1ErAMD5oVhhwPxi5X61\ntHfra1cPrtGqj5Rmp2hMTore3l2nrjCjVgCAc9enYmVmS8xsp5ntMbNvneG4+WbWbWZ3eBcRw0FL\ne5d++u4+XTM5T1MLM/yOc1pXTRqplvZuvX/giN9RAABD0FmLlZkFJf1Q0nWSpkj6jJlNOc1x35X0\nqtchMfQ9vbZCTce7Bt3cqpOV5aSoJCtZb++qU3eEUSsAwLnpy4jVAkl7nHPlzrlOSU9LuuUUx31N\n0lJJ7GqLjwlHnH6xar8WjM7SzOJMv+OckZnpyokjdfR4lzYdPOp3HADAENOXYlUkqaLX7crofSeY\nWZGk2yT9h3fRMFy8vr1GlUeO6/OLR/sdpU8m5KWqKDNJb+6qYzV2AMA58Wry+v+V9E3n3BmvnZjZ\ng2a23szW19XVeXRqDHY/e2+/ijKTdO2UPL+j9ImZ6fIJuWps7dS26ma/4wAAhpC+FKsqScW9bo+K\n3tfbPElPm9l+SXdI+pGZ3XryJ3LOPeqcm+ecm5ebm3uekTGU7DjcrFXlDbr3olKFgkPnRahTCtM1\nIjlOK/fU+x0FADCE9OUn3TpJ481sjJnFS7pL0vLeBzjnxjjnRjvnRkv6jaQ/cc4973laDDk/f2+/\nEuMCumt+8dkPHkQCZrp4bI4ONLap8kib33EAAEPEWYuVc65b0lclvSJpu6RnnXNbzewhM3uovwNi\n6DrS2qnnNlbpttlFykyO9zvOOZtbOkIJoYDeY9QKANBHob4c5Jx7SdJLJ933yGmO/dyFx8Jw8PS6\nCnV0R/S5i8f4HeW8JMYFNa90hFaVN2jJtC5lJMX5HQkAMMgNnUkvGFK6wxE9sWq/Lh6brYn5g2Oz\n5fNx0dgcOSetLm/wOwoAYAigWKFfvLa9Roea2vW5i0f7HeWCZKXEa3JButbua2RzZgDAWVGs0C+e\nXFuhwoxEXT15aCyxcCaLx+XoeFdYGyvY5gYAcGYUK3iuorFN7+yu06fmFSsYML/jXLDR2ckqzEzU\nyj0NijgWDAUAnB7FCp57dn3PQv2fHmJLLJyOmWnx2BzVHetQeV2r33EAAIMYxQqe6g5H9Oz6Cl0+\nIVdFmUl+x/HMtKIMJccHmcQOADgjihU89ebOOtU0d+iu+SV+R/FUXDCgeaUjtONws5qOd/kdBwAw\nSFGs4Kmn1x1UblqCrp480u8onlswJlvOSev2N/odBQAwSFGs4JnqpuN6Y0etPjV3lOKG0L6AfZWV\nEq/xealat79R4QiT2AEAf2j4/fSDb369vlIRJ905TCatn8qiMdlqae/W9upmv6MAAAYhihU8EYk4\nPbOuQovHZas0O8XvOP1mQn6aMpPjtHofk9gBAH+IYgVPvLunXlVHjw+7SesnC5hpwegslde1qral\n3e84AIBBhmIFTyzdUKmMpDh9YurQX2n9bOaNzlLQTGv3MYkdAPBxFCtcsJb2Lr2y9bBumlmghFDQ\n7zj9LjUhpKlF6dpw8Aj7BwIAPoZihQv20pZqtXdFdPucUX5HGTALx2SrvSuiLVVNfkcBAAwiFCtc\nsKUbqlSWk6LZxZl+Rxkwo7OTlZuWoLVMYgcA9EKxwgWpaGzT2n2N+uTcUTIb+hsu95VFJ7FXHDmu\n6qbjfscBAAwSFCtckGUbqmQm3Tq7yO8oA252SaZCAWMldgDACRQrnDfnnJZtrNRFZdnDasPlvkqO\nD2laUYY2Hjyqts5uv+MAAAYBihXO2/oDR3SgoS2mJq2fbMHoLHV0R/TCB9V+RwEADAIUK5y3ZRsq\nlRQX1HXT8v2O4pvS7GSNTEvQk2sO+h0FADAIUKxwXtq7wnphc7Wum5avlISQ33F8Y2aaPzpLmyqO\natsh9g8EgFhHscJ5+f22GrV0dOuTc2P3MuBHZpdkKiEU0FNrGbUCgFhHscJ5WbqhUgUZiVpUlu13\nFN8lx4d0w/QCPb+xiknsABDjKFY4Z7Ut7Xp7V51um12kYCB21q46k7sXlqilo1v/tfmQ31EAAD6i\nWOGc/XbjIUWcYvrVgCebWzpCE/JS9eTaCr+jAAB8RLHCOXHOaemGSs0sztS4kal+xxk0zEyfWVCi\nzRVHtfUQ+wcCQKyiWOGcbKtu1o7DLbpjTuyttH42t88exSR2AIhxFCuck6XvVykuaLpxRqHfUQad\njOQ43TCjQM9vPKTWDiaxA0Asolihz7rCES3fXKWrJ+VpREq833EGpc8uLNExJrEDQMyiWKHP3t5V\np/pjnbqdy4CnNaekZxI7lwMBIDZRrNBnyzZUKSslXldMHOl3lEHLzHT3ghJtrmzSh1VMYgeAWEOx\nQp80tXXp99tqdPPMQsWH+LY5k9vmMIkdAGIVPyHRJy9sOaTOcITLgH2QkRSnG2cU6rebmMQOALGG\nYoU+Wfp+pcaPTNX0ogy/owwJd0cnsS9nEjsAxBSKFc5qX32rNhw8qk/OHSUztrDpizklmZqYl8bl\nQACIMRQrnNVzGyoVMOnWWVwG7Csz090LS/QBk9gBIKZQrHBGkYjT0g1VWjwuR/kZiX7HGVJunV2k\nxLiAfrWGUSsAiBUUK5zR2v2Nqjp6XJ9kw+Vz9tEk9uWbqnSMSewAEBMoVjijZRsqlRIf1Cem5vkd\nZUi6e2GJWjvDWr6JSewAEAsoVjit451hvbTlsK6fXqDk+JDfcYak2cWZmpTPJHYAiBUUK5zWq9sO\n61hHt27nMuB5+2gS+5aqJm2pZBI7AAx3FCuc1tINVSrKTNLCMVl+RxnSPprE/uTaA35HAQD0M4oV\nTqmmuV3v7q7T7XOKFAiwdtWFSE+M003Rldhb2rv8jgMA6EcUK5zS8xurFHHSbbNZu8oL9ywqVVtn\nWMs2VPkdBQDQjyhW+APOOS3dUKk5JZkqy031O86wMLM4UzOLM/WLVfvlnPM7DgCgn1Cs8Ae2HmrW\nrppjTFr32B9fVKryula9t6fB7ygAgH5CscIfWLqhUvHBgG6cUeB3lGHlhhkFyk6J189X7vc7CgCg\nn1Cs8DFd4YiWbzqka6aMVGZyvN9xhpWEUFCfWVCi13fUqKKxze84AIB+QLHCx7y1s04NrZ26fTaX\nAfvD3QtLFDDTf65h6QUAGI4oVviYZRsrlZ0Sr8sn5vodZVgqzEzSJ6bk6Zl1FWrvCvsdBwDgMYoV\nTmhq69Jr22p186xCxQX51ugv9100Wkfbutg/EACGIX564oT/+uCQOsMRfZJXA/arRWVZmpiXpp+v\nZOkFABhuKFY4YdmGSk3MS9PUwnS/owxrZqb7Li7Vtupmrd3X6HccAICHKFaQJO2rb9WGg0d1+5wi\nmbGFTX+7ffYojUiO00/e2ed3FACAhyhWkCQ9u75CAevZMBj9Lyk+qHsXler1HTUqrzvmdxwAgEco\nVlB3OKLfvF+pqyaNVF56ot9xYsa9F41WXDCgn77LqBUADBcUK2jFzjrVtXTo0/OK/Y4SU3LTEnTb\nrCL95v1KNRzr8DsOAMADFCvomXUVyk1L0JWTRvodJebcf+kYdXRH9J+rD/odBQDgAYpVjKtpbteK\nnbW6Y+4o1q7ywfi8NF0xMVdPrN7PgqEAMAzwkzTG/eb9SoUjjsuAPnrw0jLVH+vU8xur/I4CALhA\nfSpWZrbEzHaa2R4z+9YpHv+smX1gZlvMbKWZzfQ+KrzmnNOz6yu0cEyWxuSk+B0nZl00NltTCtL1\n2Lv7FImwYCgADGVnLVZmFpT0Q0nXSZoi6TNmNuWkw/ZJutw5N13SP0h61Oug8N7q8kYdaGjTXQsY\nrfKTmenBy8q0p/aYXt1W43ccAMAF6MuI1QJJe5xz5c65TklPS7ql9wHOuZXOuSPRm6slsSfKEPDs\n+gqlJYZ03bQCv6PEvBtnFKg0O1n//sZutrkBgCGsL8WqSFJFr9uV0ftO54uSXr6QUOh/TW1demlL\ntW6dVaTEuKDfcWJeKBjQV64Yp62HmrViZ63fcQAA58nTyetmdqV6itU3T/P4g2a23szW19XVeXlq\nnKPnNlaqozuiO+dzGXCwuG1OkYoyk/Tw63sYtQKAIaovxapKUu+fvqOi932Mmc2Q9JikW5xzDaf6\nRM65R51z85xz83Jzc88nLzzgnNMTqw9oVnGmphVl+B0HUXHBgP7kyrHaVHFU7+yu9zsOAOA89KVY\nrZM03szGmFm8pLskLe99gJmVSFom6V7n3C7vY8JLq/Y2aG9dq+5dVOp3FJzkjrmjVJCRyFwrABii\nzlqsnHPdkr4q6RVJ2yU965zbamYPmdlD0cP+RlK2pB+Z2SYzW99viXHBnlh9QJnJcbphBpPWB5uE\nUFBfuqxM6/Yf0eryRr/jAADOUagvBznnXpL00kn3PdLr/fsl3e9tNPSHw03tenVbje6/ZAyT1gep\nuxaU6Acr9urf39iti8Zm+x0HAHAOWHk9xjy19qAizunuhSV+R8FpJMYF9dDlZVq5t0Er9zLXCgCG\nEopVDOkKR/TU2oO6fEKuSrNZaX0wu2dRqQozEvXdl3cw1woAhhCKVQz5/bYa1bZ0MGl9CEiMC+ov\nrp2gzZVNemnLYb/jAAD6iGIVQ55YdUBFmUm6YuJIv6OgD26fM0oT89L0vVd2qCsc8TsOAKAPKFYx\nYndNi1aVN+izi0oUDJjfcdAHwYDpm9dN1P6GNj299qDfcQAAfUCxihGPv7dPCaGA7pzHSutDyZUT\nR2rhmCz92+u71drR7XccAMBZUKxiQP2xDi3dUKXb54xSdmqC33FwDsxM37pukuqPdeon75T7HQcA\ncBYUqxjwxKoD6uyO6IuXjPE7Cs7D7JIRun56vh59u1yHm9r9jgMAOIM+LRCKoau9K6wnVh/Q1ZNG\natzIVL/j4Dx9c8kkvba9Vv/44jb94O45fscB+uzJNUN/fiDr/uFcMGI1zC3bUKXG1k7df2mZ31Fw\nAUqzU/SVK8bphQ+q9c7uOr/jAABOg2I1jEUiTo+9W65pRelaVJbldxxcoC9dXqbR2cn6m99uVUd3\n2O84AIBToFgNYyt21qq8rlUPXFomM5ZYGOoS44L6X7dM0776Vj36FhPZAWAwolgNYz95p1wFGYm6\nfnqB31Hgkcsm5OqG6QX6wYo9OtjQ5nccAMBJKFbD1JbKJq0ub9TnF49WXJAv83Dy/944RaGA6W+X\nf8g+ggAwyPATd5h6+I3dSk8M6a4FvJpluMnPSNRfXDtBK3bWaemGKr/jAAB6oVgNQ1sPNen322r0\nxUvKlJ4Y53cc9IPPLx6jBaOz9HfLt6qikUuCADBYUKyGoYdf3620xJA+t3i031HQT4IB0798eqYk\n6evPblY4wiVBABgMKFbDzPbqZr2ytUZfWDxGGUmMVg1nxVnJ+rubp2rt/kY9+javEgSAwYBiNcw8\n/PpupSWE9IXFbF8TCz45p0jXTcvX93+/Ux9WNfkdBwBiHsVqGNl5uEUvf3hYn1s8WhnJjFbFAjPT\n/75tukYkx+svntmk1o5uvyMBQEyjWA0jD7+xW6kJITZbjjEjUuL1/U/P0t66Y/rGrzcrwnwrAPAN\nxWqY2Hm4RS9tqdYfX1yqzOR4v+NggF0yPkffvm6yXv7wsP79jT1+xwGAmEWxGia+8/J2pSaEdP8l\nbLYcq+6/dIxum12kf31tl17ZetjvOAAQkyhWw8C7u+u1YmedvnbVOI1IYbQqVpmZ/vn26Zo5KkN/\n+cwm7Tzc4nckAIg5FKshLhxx+qeXtmvUiCTdd9Fov+PAZ4lxQf343nlKSQjp/l+uU01zu9+RACCm\nUKyGuGUbKrW9ull/tWSSEuOCfsfBIJCfkahH75unxmOduvsnq1V/rMPvSIhxEecUjjj2tkRMCPkd\nAOfveGdY/+fVnZpZnKmbZhT4HQeDyKziTD3+ufn645+t1T2PrdFTDyziMjE8F444HWxs087DLTrQ\n0KrqpnZVNx3X4aZ2NbZ1qq0jrOb2LnWFewqVqWfXgGDAlBAKKC0xTmmJIaUlhjQiOV4j0xI0Mi1R\nI1LiFQyYv08OOE8UqyHssXfKVdPcoR/cPUdm/CeEj1tYlq3H7puvL/xine57fK3+8/6FrMaP8+ac\n0776Vq0/cEQbDhzRh4eatLvmmDq6IyeOSUsIKT8jUQWZSSrLTVVyfFAHG9oUHwrIzBSOOIUjEYUj\nTse7Impp71LT8S5VHDn+sTXYQgFTXnqiSrOTVZqdotLsZPY9xZBBsRqialva9chbe7Vkar7mj87y\nOw4GqUvG5+jH98zVg0+s1x8/vlaPf26+shi5Qh9VNLbp7d11emdXvdbsa9CRti5JUnpiSDOLM3Xv\nolJNyE/TpPw0jclJUdopys+Taw726VwdXWHVtnT0vDW3q/Loca3b36iVexskSTmp8ZqUn66J+Wkq\nzU5WKMBMFgxOFKsh6n/91zZ1hZ2+ed0kv6NgkLty0kj98O45+upTG3Xbj97Tzz43X2W5qX7HwiAU\niTi9f/CIXt5yWCt21mpffaskqTAjUVdPztO80hGaWzpCY3NTFfD4Ul1CXFDFWckqzko+cV844nTo\n6HEdaGjV7tpjWlXeoHf31CshFNDE/DTNHJWp8XmplCwMKhSrIeiNHTV64YNqff3aCRqTk+J3HAwB\nn5iar6ceWKgHfvm+bvvRSv343rlaVJbtdywMAt3hiNbub9TLWw7rla2HVdvSofhQQIvHZuu+i0p1\n6fhcjc1N8WW6QTBgJ8rWJeNz1dEd1t7aVu043Kxt1c36oLJJSXFBTS1M1+ySERqdncy0CPiOYjXE\ntHZ0638+96HGj0zVly4f63ccDCFzS7P0/J8s1ud/vlb3/nSN/vn2Gbpj7ii/Y8EHXeGIVu5t0O8+\nrNYrW2vU2NqpxLiArpw4UtdNL9BVk0YqNWHw/XhICAU1pTBdUwrTdUvEaU/tMW2uPKoPqpq0/sAR\n5aQmaP7oEZpdMmJQ5kds4DtviPmXV3fpUFO7ln75IsWHGP7GuSnJTtayLy/Wl3/1vr7x681aubde\nf3fzVCYGxwDnnDZVHNVzG6v0X5sP6Uhbl1Lig7p6cp6um5avyyfmKjl+6PxICAZME/PTNDE/TZ3d\nEX14qEnr9jXq5Q8P69WtNZpWlK5LxueqKDPJ76iIMUPnXxG0ueKofr5yn+5ZVKK5pUxYx/nJSI7T\nL76wQP/+xh79cMUerSlv1Pc/PVMLuTQ4LFU0tum5jVV6fmOVyutbFR8K6Nopebp1VpEuHZ8zLNa/\niw8FNKfJMDahAAAV4UlEQVRkhOaUjFBNc7vW7m/UhgNHtLmySWU5Kbp0fI7G56UpwGVCDACK1RDR\nFY7oW8u2KDctQX+1hAnruDBxwYD+8toJumJirv7ymU266yer9cClZfqzq8crhUsoQ15TW5de3FKt\n5zZWat3+I5KkhWOy9KXLy3Td9IJhPUKZl56om2YU6trJeVq3v1Hv7anXL1YdUG5agi4dl6OZxZmK\nCzLaj/7D/6BDxMOv79b26mY9cs/cYf2fIgbWnJIRevFPL9U/vrhdj75druc2Vukbn5igO+YWs0Dj\nENPZHdGKnbV6fmOVXt9eq85wRGNzU/Q//miibplVqFEjks/+SYaRxLigLh2fq4vGZmtLZZPe3VOv\nZRur9Mq2Gl1Ulq1FY7KUzC8R6Ad8Vw0BK/fU6wcr9ujT80ZpybR8v+NgmElJCOmfb5+uT80bpX98\nYZu+uXSLfvbefv0/10/WpeNzeJXVIBaJOK3b36jlmw/pxS3VOtrWpZzUeH12UYlunz1K04rSY/7r\nFwoENLtkhGYVZ2pvXave3VOn17bX6O3ddbqoLFuXjMthlBae4rtpkKs/1qE/e2aTynJS9Hc3T/U7\nDoaxOSUjtPTLF+vFLdX6zss7dN/jazWtKF33X1KmG2YUcPlkkHDOaUtVk5ZvOqQXPqjW4eZ2JcYF\ndO2UfN0+u0iXjM/ha3UKZqZxI1M1bmSqDje3682dtXp7V51W7W3QorIsXTI+l1cSwhN8Fw1ikYjT\n15/drKbjXfrlFxYMqVfsYGgyM904o1DXTM7Tcxur9Ng75frzZzbpOy/v0L0XlerW2UW8ysone2pb\ntHzTIS3ffEj7G9oUFzRdNj5X375+kq6ZnMeoyznIT0/UXfNLdOXEdq3YWat3dtdrVXmDFo3J1iXj\nc065gjzQV/xLHMQee7dcb+2q0z/cOk2TC9L9joMYkhgX1GcWlOjOecV6a3edHnunXN97Zae+98pO\nLRiTpVtmFeqG6QXKTGZ7nP4SjvQsj/Da9hq9vr1Gu2qOyUy6qCxbD10+Vkum5fP3f4HyogXrqknt\nenNnnd7dU6/V+xq0cEy2LqVg4TyZc86XE8+bN8+tX7/el3MPBev2N+ozj67WNZPz9B/3DN9Nlvu6\nj9hgd/fCEr8jeOJMX4+GYx3aXNmkzRVHVXesQwGTRo1I1oS8VI0fmaaiEUmD4uXsQ/lr0drRrXd2\n1+v17TV6aUu1WjvDCpg0OjtFkwvSNX1UBi9e6Uf1LR1asbNWmyqOKhgwLRyTpUsn5OohFmOGJDN7\n3zk372zHMWI1CJXXHdMDv1yvkqxkffeTM4ZtqcLQkp2aoKsmjdSVE3NV3dSurYeatLv2mF7fXqvX\nttcqMS6gkuj2IyVZyRqVmayk+KG/RlJ/cs5pV80xrdpbrzd31Wnl3gZ1dkeUlhjS2JGpmpyfrgl5\nafw9DpCctAR9al6xrpw0Um/urNWq8gat2deow03teujyscrPSPQ7IoYAitUg09jaqS/8fJ0CZvrZ\n5+crI5nfTjG4mJkKM5NUmJmka6f0jLLsqT2mvXXHVHGkTbu31+qjcfDM5DjlpycqPz1ReemJykqJ\nV3ZKvJLigzH5C0N3OKIdh1u04eARrd3XqNXlDao/1ilJKs1O1j0LS3XNlJGaPzpLv15f6XPa2JWT\nmqA75hbryokj9ebOOj2x+oCeXHtQd80v1kOXj1Uh8wxxBhSrQaS9K6wHfrleh5ra9dQDC1WazQbL\nGPxSEkKaWZypmcWZknq+jyuPHFflkTYdbm7X4aZ27appUaTXrIPEuICyUuKVlZKg7JT46PvxSk+M\nU3piSAnDYDXw7nBE5fWt2naoZ8PgzRVH9UFlk453hSVJeekJJ9ZZuqgsW8VZsbXO1FCQnZqgT84d\npX+9c5Z+9OYePbnmoJ5ae1CfmlesL18+lq8ZToliNUhEIk7f+PVmvX/giH549xy2rMGQlRgXPPGy\n9o90hyOqb+1U47FONbZ2qKG1U42tnao+elzbDjV9rHRJUkIooLTEOKUnhaJlK05piSGlJASVEh9S\nSkJIyfFBpSSEfF1aoDscUW1Lh6qbjutgY5vK61p73upbtbfumDq7I5Kk+GBAkwrSdOf8Ys0uydTc\n0hEqykyKyVG7oagkO1nf+eQMffWqcfqPN/fq2fUVenZdhT45Z5S+cuU4lWRTsPDfKFaDQDji9NfP\nbdELH1TrW9dN0g0zCvyOBHgqFAycuCR4snDEqel4l460daqlvUvNx7vV3N6l5uNdam7v1v6GVrUc\n71b4NC+0iQ8FlBIfVHJ8SAlxAb25s1apiSGlJYSUmhhSakKcUhNDSo4LKhQ0hQIBBQOmuKApGPjv\n22ZSd9ipKxJRd9ipszui1o5utXZ2q7WjW83t3WqIFsPG1k7VtXSopqVD4V6tMGBScVayynJSdMm4\nbE0pTNeUggyV5aawttQwMGpEsv7ptun6ypXj9OO39uqpdRX6zYZK3TqrSF+5cqzKclPP/kkw7FGs\nfNYdjuivfvOBlm2s0teuGqcvXVbmdyRgQAUDduJS4OlEnFN7Z1jHOrvV1hGOlp2w2qKlp7Wz5/2O\nrogONrappb1bxzp63sInD4edp4RQQNkp8RoRzTo2N1WFmUkqyExUYWaSRmUmqSQ7WQmhoX8ZE2dW\nmJmkv79lmv7kynH68Vvl+tWaA1q2sVLXTs7Tly4v44pDjKNY+agrHNGfP7NJL35Qra9fO0Ffu3q8\n35GAQSlgpuSEUM/ebmlnPrb3cgvOObV3RdTS0aW2jrC6I07hiFN3dFTqxO1wRE5SKGAKBQOKC5oS\nQsGPXXqMDzHihI/LS0/U39w0RV++Yqx+uWq/frnqgF7dVqN5pSP04GVlumZyngLsuRlzKFY+ae8K\n60+f2qhXt9Xor6+frAcYqQI8Z2ZKig/2LFdwlkIGnK/ctAR9/RMT9dDlY/Xs+go99s4+PfjE+yrL\nTdEDl5bpttlFShwGL8hA3/ArmA8OHT2uT/94lV7dVqO/v3kqpQoAhoGUhJA+v3iM3vofV+jhz8xW\nUlxQ3162RZd8d4X+7bXdqmlu9zsiBgAjVgNsTXmDvvLkBrV3RfTovXP1ian5fkcCAHgoFAzo5pmF\numlGgVbubdCjb5frX1/bpYff2K1rJ+fp7oUlumRcDpcJhymK1QBxzumXqw7oH17YppLsZD394LyP\nvRwdADC8mJkWj8vR4nE52l/fqqfWHdSv11fqd1sPqyQrWXcvLNGn5o5SdmqC31HhIYrVADh09Lj+\n+rktWrGzTtdMHqnv3zmL/b4AIIaMzknRt6+brL+8doJ+9+FhPbnmoL7z8g59/9VdWjItX3fNL9bC\nsmwFGcUa8ihW/SgScfrV2oP67ss7FI44/c2NU/S5i0cz/AsAMSohFNQts4p0y6wi7alt0a/WHNTS\n9yu1fPMh5acn6pZZhbptTpEm5af7HRXniWLVT7ZUNukfXtimtfsbdcm4HP3z7dPZ/gAAcMK4kWn6\n25um6ptLJum17TV6fmOVfvruPv347XJNyEvVddMKdP30Ak3IS2WV/iGEYuWxXTUt+v6ru/S7rYeV\nmRyn/++OGfrU3FH8owAAnFJiXFA3zijUjTMK1djaqRc/OKQXPqjWw2/s1r+9vltlOSn6xNR8XTVp\npOaUZCrEKv6DmrnTbBPR3+bNm+fWr1/vy7n7w4dVTfrpu/v0/KYqpcSHdP+lY/TFS8YojblUZ/Tk\nmoN+RwCAM+q96OxAqmvp0KvbDuulLdVaU96o7ohTRlKcLp+Qq8sn5GrxuBzlZ/zhNlHoH2b2vnNu\n3tmOY8TqArR3hfXCB9X6z9UHtKniqBLjAnrw0jI9dPlYjTjD9hwAAJxNblqCPruwVJ9dWKrm9i69\ns6teb+yo1Zs7a7V88yFJUlluihaPzdGismzNGz1CeafYjxMDi2J1jtq7wnp3d71+t/Wwfr+tRk3H\nuzQ2N0V/e9MU3T5nlDKSGKECAHgrPTFON8wo0A0zChSJOG0/3KyVexr03t56Ld1QqSdWH5AkFWcl\naV5plmYVZ2pKYbom5adx5WSAUazOwjmnvXXHtLq8USv31uutnXVq7QwrLTGkaybn6dPzirWoLIs5\nVACAAREImKYWZmhqYYYeuKxMnd0Rbatu1vr9jVq//4je2V2v5zZWnTi+NDtZk/PTNaUwXVMKev4s\nyEjk51Y/6VOxMrMlkv5NUlDSY86575z0uEUfv15Sm6TPOec2eJy13znndLi5Xdurm7W9ukUfVjVp\n3f5G1R/rlCTlpSfoltlFWjI1X4vKstmUFQDgu/hQQLOKMzWrOFP3X9rzs6ymuUPbqpu0vbpF2w41\na1t1s3639fCJj0mJD6o4K1ml2ckqzU5RSfT9kqxkFWUmMUH+Apy1WJlZUNIPJV0rqVLSOjNb7pzb\n1uuw6ySNj74tlPQf0T8HFeecmo53qaa5Q7Ut7Trc1K6KxjYdaGzTgYY27W9o1dG2rhPHl2Ql67Lx\nuVpYlqWFY7JVmp1MwwcADGpmpvyMROVnJOqqSXkn7j/W0a2dh5u17VCz9ta1qqKxTXvrWrViZ506\nuyMnjgsGTHlpCcrt/Zb68duZyfFKSwwpPTGODaZP0pcRqwWS9jjnyiXJzJ6WdIuk3sXqFkm/dD0v\nMVxtZplmVuCcq/Y8cR/tq2/VP724TU3Hu3S0rUtHj3epqa1LneHIx44LmFSYmaTS7GRdP71Ak/LT\nNLmA69IAgOElNSGkuaVZmlua9bH7IxGnmpZ2HWzoGWg42NCmw83tqmvp0KGj7dpc2aSGYx2KnGYR\ngfhgQOlJIaUlxp0oW0nxQSXGBZUYCvT8GffRnz1vcUFTMGAKmikQMIUC0dvR+yQp4qSwc3LOKeKc\nIpH/vt0ZdursjqijO6yOrohmjMrQ1ZPzTh1wgPWlWBVJquh1u1J/OBp1qmOKJPlWrExS1dF2ZSbF\nadzIVGUmxykjKV65aQnKS0/QyLRE5aUnqCAjiUt6AICYFQiYCjKSVJCRpIVl2ac8JhxxamztVF1L\nzxWfpuNdaj7epeb2bjW3d6mlvVvNx6N/tnep/liH2rvCau+KqD1aftq7w+qvFZ7uWVQypIqVZ8zs\nQUkPRm8eM7OdA3l+DEo5kur9DuGDWHzesficJZ73kPdZvwPgrP4p+tbPSvtyUF+KVZWk4l63R0Xv\nO9dj5Jx7VNKjfQmG2GBm6/uy4NpwE4vPOxafs8Tz9jsHMND6cg1snaTxZjbGzOIl3SVp+UnHLJd0\nn/VYJKnJz/lVAAAAfjjriJVzrtvMvirpFfUst/C4c26rmT0UffwRSS+pZ6mFPepZbuHz/RcZAABg\ncOrTHCvn3EvqKU+973uk1/tO0le8jYYYEauXhmPxecfic5Z43kBM8W0TZgAAgOGGdQYAAAA8QrGC\nL8xsiZntNLM9ZvYtv/MMBDN73MxqzexDv7MMJDMrNrMVZrbNzLaa2Z/5nam/mVmima01s83R5/z3\nfmcaSGYWNLONZvaC31mAgUaxwoDrtU3SdZKmSPqMmU3xN9WA+LmkJX6H8EG3pK8756ZIWiTpKzHw\n9e6QdJVzbqakWZKWRF8xHSv+TNJ2v0MAfqBYwQ8ntklyznVK+mibpGHNOfe2pEa/cww051z1R5uy\nO+da1PMDt8jfVP3L9TgWvRkXfYuJCa1mNkrSDZIe8zsL4AeKFfxwui2QMMyZ2WhJsyWt8TdJ/4te\nDtskqVbS751zw/45R/1fSX8lKXK2A4HhiGIFYECYWaqkpZL+3DnX7Hee/uacCzvnZqlnJ4oFZjbN\n70z9zcxulFTrnHvf7yyAXyhW8EOftkDC8GFmceopVb9yzi3zO89Acs4dlbRCsTG/brGkm81sv3ou\n8V9lZv/pbyRgYFGs4Ie+bJOEYcLMTNJPJW13zn3f7zwDwcxyzSwz+n6SpGsl7fA3Vf9zzn3bOTfK\nOTdaPf+u33DO3eNzLGBAUaww4Jxz3ZI+2iZpu6RnnXNb/U3V/8zsKUmrJE00s0oz+6LfmQbIYkn3\nqmf0YlP07Xq/Q/WzAkkrzOwD9fwi8XvnHEsPADGAldcBAAA8wogVAACARyhWAAAAHqFYAQAAeIRi\nBQAA4BGKFQAAgEcoVgAAAB6hWAE4KzMLR9ef2mpmm83s62YWiD42z8wePsPHjjazuwcu7R+c+3h0\nz75BwczuNLM9Zsa6VsAwRLEC0BfHnXOznHNT1bOK+HWS/laSnHPrnXN/eoaPHS3Jl2IVtTe6Z1+f\nmVmwv8I4556RdH9/fX4A/qJYATgnzrlaSQ9K+qr1uOKj0Rczu7zX6uobzSxN0nckXRq97y+io0jv\nmNmG6NvF0Y+9wszeNLPfmNkOM/tVdDscmdl8M1sZHS1ba2ZpZhY0s++Z2Toz+8DMvtSX/Gb2vJm9\nHx19e7DX/cfM7F/MbLOki05zzqnR9zdFzzk++rH39Lr/xx8VMzNbEn2Om83sdQ+/DAAGqZDfAQAM\nPc658mh5GHnSQ9+Q9BXn3HtmliqpXdK3JH3DOXejJJlZsqRrnXPt0WLylKR50Y+fLWmqpEOS3pO0\n2MzWSnpG0p3OuXVmli7puKQvSmpyzs03swRJ75nZq865fWeJ/wXnXGN0D791ZrbUOdcgKUXSGufc\n16N7WO44xTkfkvRvzrlfRY8JmtlkSXdKWuyc6zKzH0n6rJm9LOknki5zzu0zs6xz/osGMORQrAB4\n6T1J3zezX0la5pyrjA469RYn6QdmNktSWNKEXo+tdc5VSlJ0XtRoSU2Sqp1z6yTJOdccffwTkmaY\n2R3Rj82QNF7S2YrVn5rZbdH3i6Mf0xDNsjR6/8TTnHOVpL82s1HR57fbzK6WNFc9JU2SkiTVSlok\n6e2Pip5zrvEsuQAMAxQrAOfMzMrUU0RqJU3+6H7n3HfM7EVJ16tnBOmPTvHhfyGpRtJM9UxHaO/1\nWEev98M68/9RJulrzrlXziH3FZKukXSRc67NzN6UlBh9uN05Fz7TxzvnnjSzNZJukPRS9PKjSfqF\nc+7bJ53rpr7mAjB8MMcKwDkxs1xJj0j6gTtpF3czG+uc2+Kc+66kdZImSWqRlNbrsAz1jAZFJN0r\n6WwTxXdKKjCz+dFzpJlZSNIrkr5sZnHR+yeYWcpZPleGpCPRUjVJPaNKfT5ntFCWO+celvRbSTMk\nvS7pDjMbGT02y8xKJa2WdJmZjfno/rNkAzAMMGIFoC+Sopfm4iR1S3pC0vdPcdyfm9mVkiKStkp6\nOfp+ODop/OeSfiRpqZndJ+l3klrPdGLnXKeZ3Snp36Pzoo6rZ9TpMfVcKtwQneReJ+nWszyP30l6\nyMy2q6c8rT7Hc35a0r1m1iXpsKT/HZ2v9T8lvWo9S1B0qWee2ero5Phl0ftr1fOKSgDDmJ30CycA\nDBtmNlrSC865aT5H+ZjoJckTE/oBDB9cCgQwnIUlZdggWyBUPaN2R/zOAsB7jFgBAAB4hBErAAAA\nj1CsAAAAPEKxAgAA8AjFCgAAwCMUKwAAAI/8/wx0TzjNfzDmAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(dxs['dxs_ra'], dxs['dxs_dec'])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: MergeConflictWarning: Cannot merge meta key 'EXTNAME' types and , choosing EXTNAME='/Users/rs548/GitHub/dmu_products/dmu1/dmu1_ml_XMM-LSS/data_tmp/UK...' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-27T13:11:51' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'EXTNAME' types and , choosing EXTNAME='/Users/rs548/GitHub/dmu_products/dmu1/dmu1_ml_XMM-LSS/data_tmp/UK...' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-27T13:11:51' [astropy.utils.metadata]\n" + ] + } + ], + "source": [ + "# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, dxs, \"dxs_ra\", \"dxs_dec\", radius=0.8*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add UDS" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8XOWZ9//Ppd577+69Ydl0MMXBNhCSwAZCEjaQhCUJ\naZuyZDe72WfL70l2n80m2ZD1EhZIsgFCxwSDDQRMcZPcLXfLtnqxrGJJltXu3x8aWEUxWMZHmhnp\n+3699EJz5sycS4M189V97nPd5pxDRERERM5fiL8LEBERERkrFKxEREREPKJgJSIiIuIRBSsRERER\njyhYiYiIiHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8EuavA6elpbmioiJ/\nHV5ERERk2LZs2XLcOZd+tv38FqyKioooLS311+FFREREhs3Mjg1nP50KFBEREfGIgpWIiIiIRxSs\nRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhH\nFKxEREREPKJgJSIiIuIRBSsRERERj4T5uwD5cB7dVPGhHnf7hQUeVyIiIiLv0oiViIiIiEeGFazM\nbJmZ7TezQ2Z23xnuTzSzF8xsh5mVmdmd3pcqIiIiEtjOGqzMLBS4H1gOzAQ+ZWYzh+z2FWCPc24e\nsAT4NzOL8LhWERERkYA2nBGrxcAh51y5c64beBy4acg+Dog3MwPigBNAr6eVioiIiAS44QSrXKBy\n0O0q37bBfg7MAGqAXcDXnXP9nlQoIiIiEiS8mrx+HbAdyAHmAz83s4ShO5nZ3WZWamaljY2NHh1a\nREREJDAMJ1hVA/mDbuf5tg12J/CMG3AIOAJMH/pEzrkHnHPFzrni9PT0D1uziIiISEAaTrAqAaaY\n2QTfhPTbgFVD9qkArgEws0xgGlDuZaEiIiIige6sDUKdc71mdi+wBggFHnLOlZnZPb77VwL/CDxi\nZrsAA/7KOXd8BOsWERERCTjD6rzunFsNrB6ybeWg72uAj3hbmoiIiEhwUed1EREREY8oWImIiIh4\nRMFKRERExCMKViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhYiYiI\niHhEwUpERETEIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJ\niIiIeETBSkRERMQjClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8o\nWImIiIh4RMFKRERExCMKViIiIiIeUbASERER8ciwgpWZLTOz/WZ2yMzuO8P93zGz7b6v3WbWZ2Yp\n3pcrIiIiErjOGqzMLBS4H1gOzAQ+ZWYzB+/jnPtX59x859x84HvAOufciZEoWERERCRQDWfEajFw\nyDlX7pzrBh4HbvqA/T8FPOZFcSIiIiLBZDjBKheoHHS7yrftT5hZDLAMePr8SxMREREJLl5PXr8R\neOf9TgOa2d1mVmpmpY2NjR4fWkRERMS/hhOsqoH8QbfzfNvO5DY+4DSgc+4B51yxc644PT19+FWK\niIiIBIHhBKsSYIqZTTCzCAbC06qhO5lZInAl8Ly3JYqIiIgEh7Cz7eCc6zWze4E1QCjwkHOuzMzu\n8d2/0rfrx4G1zrmOEatWREREJICdNVgBOOdWA6uHbFs55PYjwCNeFSYiIiISbNR5XURERMQjClYi\nIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMK\nViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhYiYiIiHhEwUpERETE\nIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeETBSkRE\nRMQjClYiIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDwyrGBlZsvMbL+ZHTKz+95nnyVmtt3Mysxs\nnbdlioiIiAS+sLPtYGahwP3AUqAKKDGzVc65PYP2SQJ+ASxzzlWYWcZIFSwiIiISqIYzYrUYOOSc\nK3fOdQOPAzcN2ed24BnnXAWAc67B2zJFREREAt9wglUuUDnodpVv22BTgWQze8PMtpjZHV4VKCIi\nIhIsznoq8ByeZyFwDRANbDCzjc65A4N3MrO7gbsBCgoKPDq0iIiISGAYzohVNZA/6Haeb9tgVcAa\n51yHc+448CYwb+gTOececM4VO+eK09PTP2zNIiIiIgFpOMGqBJhiZhPMLAK4DVg1ZJ/ngcvMLMzM\nYoALgb3elioiIiIS2M56KtA512tm9wJrgFDgIedcmZnd47t/pXNur5m9DOwE+oEHnXO7R7JwERER\nkUAzrDlWzrnVwOoh21YOuf2vwL96V5qIiIhIcFHndRERERGPKFiJiIiIeETBSkRERMQjClYiIiIi\nHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMKViIi\nIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhYiYiIiHhEwUpERETEIwpW\nIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeETBSkRERMQj\nClYiIiIiHlGwEhEREfHIsIKVmS0zs/1mdsjM7jvD/UvMrNXMtvu+/s77UkVEREQCW9jZdjCzUOB+\nYClQBZSY2Srn3J4hu77lnLthBGoUERERCQrDGbFaDBxyzpU757qBx4GbRrYsERERkeAznGCVC1QO\nul3l2zbUJWa208xeMrNZnlQnIiIiEkTOeipwmLYCBc65djNbATwHTBm6k5ndDdwNUFBQ4NGhRURE\nRALDcEasqoH8QbfzfNve45xrc861+75fDYSbWdrQJ3LOPeCcK3bOFaenp59H2SIiIiKBZzjBqgSY\nYmYTzCwCuA1YNXgHM8syM/N9v9j3vE1eFysiIiISyM56KtA512tm9wJrgFDgIedcmZnd47t/JXAL\n8CUz6wVOAbc559wI1i0iIiIScIY1x8p3em/1kG0rB33/c+Dn3pYmIiIiElzUeV1ERETEIwpWIiIi\nIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeETBSkRERMQjClYi\nIiIiHlGwEhEREfGIgpWIiIiIRxSsRERERDyiYCUiIiLiEQUrEREREY8oWImIiIh4RMFKRERExCMK\nViIiIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhYiYiIiHhEwUpERETE\nIwpWIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8MqxgZWbLzGy/mR0ys/s+YL9FZtZrZrd4V6KI\niIhIcDhrsDKzUOB+YDkwE/iUmc18n/1+BKz1ukgRERGRYDCcEavFwCHnXLlzrht4HLjpDPt9FXga\naPCwPhEREZGgMZxglQtUDrpd5dv2HjPLBT4O/Kd3pYmIiIgEF68mr/8E+CvnXP8H7WRmd5tZqZmV\nNjY2enRoERERkcAQNox9qoH8QbfzfNsGKwYeNzOANGCFmfU6554bvJNz7gHgAYDi4mL3YYsWERER\nCUTDCVYlwBQzm8BAoLoNuH3wDs65Ce9+b2aPAL8fGqpERERExrqzBivnXK+Z3QusAUKBh5xzZWZ2\nj+/+lSNco4iIiEhQGM6IFc651cDqIdvOGKicc587/7JEREREgo86r4uIiIh4RMFKRERExCMKViIi\nIiIeUbASERER8YiClYiIiIhHFKxEREREPKJgJSIiIuIRBSsRERERjyhYiYiIiHhEwUpERETEIwpW\nIiIiIh5RsBIRERHxiIKViIiIiEcUrEREREQ8omAlIiIi4hEFKxERERGPKFiJiIiIeETBSkRERMQj\nClYiIiIiHlGwEhEREfGIgpWIiIiIR8L8XYCIiIicm0c3VZzzY26/sGAEKpGhNGIlIiIi4hEFKxER\nERGPKFiJiIiIeERzrERERPzkw8yVksCmESsRERERjyhYiYiIiHhEwUpERETEI8MKVma2zMz2m9kh\nM7vvDPffZGY7zWy7mZWa2WXelyoiIiIS2M46ed3MQoH7gaVAFVBiZqucc3sG7fYasMo558xsLvAE\nMH0kChYREREJVMMZsVoMHHLOlTvnuoHHgZsG7+Cca3fOOd/NWMAhIiIiMs4MJ1jlApWDblf5tv0R\nM/u4me0DXgTu8qY8ERERkeDhWR8r59yzwLNmdgXwj8C1Q/cxs7uBuwEKCrRmkYiIBJbh9JXq63e0\nnuqhpbOb1lM9tJ7qoaunH3Dvna6JDg8lPT6StLhIUmMjCAvVtWLjxXCCVTWQP+h2nm/bGTnn3jSz\niWaW5pw7PuS+B4AHAIqLi3W6cAS1n+5ld3UrRWmxZCVE+bscEZGg1NfvqGk5RVVzJ7WtXdS0nqK+\n7TR9/X/8ERZqhtn/3u4ddL8BecnRzM9PYm5eErGR6s09lg3n/24JMMXMJjAQqG4Dbh+8g5lNBg77\nJq9fAEQCTV4XK8Nz5HgHvyupoK2rF4D85GiKi1KYm5vo58pERAJbX7+j4kQn5cfbOXa8k2MnOujp\nGwhJMRGh5CRFc8mkODLiI0mMjiApOpyE6HAiwv54RKqrp4/j7ac53n6ahpOn2Vd7khd21vLirlqm\nZcZzyeQ0JqXH+eNHlBF21mDlnOs1s3uBNUAo8JBzrszM7vHdvxK4GbjDzHqAU8Ctgyazyyjpd451\nBxp5dU89KbERfP6yCdS2nKL0WDPPbqvmpd21LJqQwmwFLBGR99S3dbFufyNvHGjgD/sa6Orpx4Cs\nxCiKC1MoSoulICWGhKgwbPCw1AeICg8lLzmGvOQYAD4yM4va1lNsr2hhe2UL//32ERbkJ7FiTrZG\nsMYY81f+KS4udqWlpX459lgwdB7A6Z4+Ht1cwcGGdubmJfLx+blEhocC4NzAX2CPba4gIyGK33/1\nMqJ894mIjDc9ff1sPdbMGwcaeWN/I3tr2wDISogiLzmaqZnxTEqPIzpiZN4ne/r6eWN/A+sONBIV\nHsr1c7KZn5807ND2Yd1+oeY2nw8z2+KcKz7bforJY8Tr+xs52NDOTfNzWFyU8ke/oGZGYWosN1+Q\nx8Prj/IvL+/n726c6cdqRURG16nuPtYdaGRtWR2v7Wug9VQPYSFGcVEy9y2fzpJp6UzLjOexzZVn\nf7LzFB4awtKZWczJS+LZrVU8uaWKvbVtfLI4X5PcxwAFqzGgpbOb9YePMz8/iQsnpL7vflMy4/nz\niwt56J0jXDMjg0snp41ilSIio6u1s4fX9tWzpqyOdQca6erpJykmnGtnZLJ05sB7YHxUuN/qy0qI\n4i+unMRbB4+zpqyOnk0V3H5hAeEKV0FNwWoMeGVPPQBLZ2aedd/7ls/grUPH+faTO3j5G1eQGO2/\nNxUREa/Vt3WxtqyONWX1rD98nH4HCVFhzM9PYmZ2IhPSYgkNMU509PDCjlp/l0uIGVdOTSc6PJTn\nt1fzqw1HueOioj+ZDC/BQ8EqyNW0nGJ7ZQuXTUkjOSbirPtHR4Ty75+czyf+cz0/eH43P7ltwShU\nKSIyco4c72BNWR1ryurYVtECwMS0WC6fks7M7ARyk6MJGeH5S+dr8YQUwkONp7ZU8fA7R/jzS4o0\nFzZIKVgFuZfL6ogKD2XJ1IxhP2ZefhL3XjWZn752kFsXFXDxpPc/fSgiEmicc5TVtL0Xpg7UtwMw\nJzeRb39kKtfNymJyRtyozJfy0oKCZMJCQ/hdSQW/2XiMuy6dQGhIYAdC+VMKVkHsYP1JDjW0s2JO\n9jlfvfKlJZP4zcZj/PfbRxSsRCSgPbqpgt7+fo40drC37iT7attoOdWDAUVpsVw/J5uZOQnvjdqX\nHG2m5Gizf4v+kObkJtLTm8dTW6t4bV89H5mZ5e+S5BwpWAWpfud4aXcdyTHhXDQh5ZwfHxUeyqcv\nLODnrx/iWFMHhamxI1CliMiH19zRzRsHGgZaydSf5HRvP+GhxuT0OK6ensH07ATixmAPqAsKkznS\n1MG6/Y0UpcYyNTPe3yXJORh7/yLHiX21bdS1dXHreVye+5mLClm57jCPrD/KD26c5XGFIiLn7sjx\nDl7dU88re+spPXqCfgfxkWHMzUtkRlYCkzLixsVVczfOzaGquZMnSiv56tVTdKFREFGwClJbK1qI\njww7ry7qmQlR3DA3hydLq/jLpVP9etmxiIxPff2OrRXNvLqnnlf31nO4sQOA6VnxfOWqyVw7I5Nd\n1a0BP/ncaxFhIXxqcQG/eP0wvyup4POXTdR8qyChYBWETnR0s7/uJBdPSj3vX7S7Lp3As9uqeaK0\nis9fNsGjCkVE/tS7K0ac7unjYEM7++ra2Fd3ks7uPkLNmJAey41zs5me/b/zpcpq2sZdqHpXRnwU\nH1uQwxOlVfxhXz1LNd8qKChYBaFV26vpc44LCpLP+7nm5CWyqCiZR9Yf4XOXFOkvIhEZEbWtp9hY\n3sS+ujYON3bQ1++IDg9lWlY807PimZoZr/YCZzA/P5mD9e28eeA4CwqSSYuL9HdJchYKVkHo6a3V\n5CRGkZUY5cnz3XXpBL702628uree62bpLyIROX/vtkR4xXeKr6xmYD2+lNgILp6YyvTseApTYvXH\n3DAsm53Fnto2XtxZy59fUuTvcuQsFKyCzIH6k+yqbuX6OdmePefSmZnkJkXz0NtHFKxE5EPr6etn\nY3kTa8rqeHVPA3VtXZjBwoKB9fi6uvtIj48c8cWGx5r4qHCunp7BS7vr2FfXxvSsBH+XJB9AwSrI\nPL2lirAQY15+kmfPGRYawucuKeKfV+/VL62InJPO7l7ePNDImrJ6XttbT1tXL9HhoVwxNY1vzZjK\n1dMzSPWdvnp3jpWcu4snpVJ6tJkXd9YyOT1OizUHMAWrINLX73h2WzVLpqV73rvl5oV5/OjlfTy7\nrZrvLVewEpH39+Bb5eyrPUlZbRuHGk7S0zcwX2pGdjwzsxOZnBFHRFgIPX2ONWX1/i53TAgLCeGG\nudk8vP4o7xxu4sqp6f4uSd6HglUQefvQcRpOnubmC/Jo7uzx9LlTYiO4Ymo6L2yv4a+um06I5j2I\nyCB1rV2s3VPHy7vr2Fje9N7ixgsLU5iVk0BRquZLjbQpmfHMyE7g9X0NLMhPIkG9rQKSglUQeXpL\nFYnR4Vw9I4Ont1R7/vw3zc/hD/saKD3WzOIP0c1dRMaWutYuXtxVy+931ry3uPGk9IHFjWflJJCb\nFK35UqPs+jnZ/OTVA6zdU88tC/P8XY6cgYJVkGjr6mFNWR2fLM4nMmxkLkm+dkYm0eGhPLe9WsFK\nZJw63n6al3bV8sLOWkqOnsA5mJGdwHeum8Z1szKZnBGvuVJ+lBIbwUUTU1l/+DhXT88gJTbC3yXJ\nEApWQeK1vfWc7u3nYwtyR+wYsZFhLJ2Zyepdtfz9jbOICNPkSJGx7tFNFXR291JW08bOqhbKGztw\nQHp8JFdPz2BubhLp8QOTzzcfaWbzkeBc3HgsuWxyGhvLm1h3oJGPj+Bngnw4ClZB4tU9DaTHR7LA\nw6sBz+RjC3JYtaOGtw42cs2MzBE9loj4T1tXD2vL6nlk/REONbTT7yA1NoIrp6UzNzeJzAS1RQhU\nCdHhLCxMpvRoM1dNSycpRqNWgUTBKgic7u1j3YFGbpyXPeKTyi+fkk5yTDjPb69RsBIZYzq7e3lt\nbwOrdtSwbn8j3X39JMWEc+nkNObmJZGTGKUwFSSunJpOydETvHXwODfOy/F3OTKIglUQ2FR+gvbT\nvVw7CkEnPDSEFXOyeWZrNR2ne4n1uK2DiIyM95v31NvXz4H6dnZWt7C3to2ePkd8VBjFRcnMzUsi\nP1kT0INRUkwEFxQkU3L0BEumpRMfpSsEA4U+NYPAq3vriQoP4dLJaaNyvJvm5/LbTRW8sqd+ROd0\nicjI6Ot3lDe2s7OqlbLaVrp6+omJCGVBfjJz8xMpSo0dtwsbjyVXTk1ny7Fm3j50nOWzvVuNQ86P\nglWAc87x2t4GLp+SPmoLlBYXJpOTGMXz26sVrESCRL9zHGvqZGdVC7urW+no7iMyLIRZOQnMzUti\nUnqc+kyNMalxkczLT2JT+QmumJKuMwwBQv8XAtze2pNUt5zi69dMGbVjhoQYH52fyy/fKqep/fR7\ny1GISGBxzrGrupUXdtTwRGkVrad6CA81pmclMDcvkamZ8YRr6ZMx7cqp6eyobGH94eMsnam1XgOB\nglWAe3VvPWZw1fSMUT3ujfOyWbnuMGv31POpxQWjemwReX/OOfbVnWT1rlpe2FHD0aZOwkONSelx\nXDcrixnZ8SPW604CT2ZCFDOyE9h05ARLpmUoSAcABasA9+reehbk/28fmdEyMzuBotQYVu+qVbAS\n8TPnHDurWnlpdx0v767laFMnIQaXTk7jy0smc92sLF7cVevvMsVPLp6Uyp7aNnZWtbKwMNnf5Yx7\nClYBrK61i51VrXx32bRRP7aZsXxONg+8WU5zRzfJ6u4rMirevbqv3zkqmjopq2mlrKaNllM9hBhM\nTI/jpvk5zMxOID4qnN5+p1A1zk1MiyUjPpIN5ce5oCBJV3n6mYJVAHtt38Cq8Ev91E9qxexs/vON\nw7yyp55PLsr3Sw0i40lvXz+HGtopq2llT00bJ0/3EhpiTMmI45oZmczIjicmQm/b8sfMjIsnpfL8\n9hoqTnRSmBrr75LGNf2GBrBX99RTmBrD5Iw4vxx/dm4CecnRrN5dq2AlMkK6evpYf/g4L++u45U9\n9TR3DkxAn5oZz+ycRKZlxY/aFcESvObnJ7GmrI4N5U0KVn42rGBlZsuAnwKhwIPOuR8Ouf/TwF8B\nBpwEvuSc2+FxreNKx+le3jncxGcuLPTbsK6ZsWJONg+/c4TWzh4SY9SATsQLbV09vL6vgbVl9byx\nv4GO7j7iI8O4ekYGsRFhTM2M11qdck4iw0JZWJDMhvIm2ub0kKCGoX5z1mBlZqHA/cBSoAooMbNV\nzrk9g3Y7AlzpnGs2s+XAA8CFI1HwePHOoeN09/Zz7YzRvRpwqBW+eVav7q3n5oV5fq1FxF/er6v5\n2dx+4f9e+NHQ1sUre+tZU1bPhsPH6elzpMVF8tH5uVw3K5OLJ6USGRb6oY8lctHEVNYfbmLzkROj\nslKHnNlwRqwWA4ecc+UAZvY4cBPwXrByzq0ftP9GQJ/A5+n1/Y3ERYaxaEKKX+uYl5dITmIUL+2u\nVbASOUdHjnewpqyOtWV1bKtswTkoTI3hzksncN2sTBbkJ4/4+p8yfqTGRTI1M56SIwPL3ISFaNTT\nH4YTrHKBykG3q/jg0ajPAy+dT1HjnXOOdfsbuHRyqt97krx7deBvNhzjZFeP1qMS+QDOOWpauiir\nHZh8/tfPngYG5iv+5bVT+cisLKZmxumqLRkxF09K5ZH1R9ld3cb8/CR/lzMueTp53cyuYiBYXfY+\n998N3A1QUKDeSO/nYEM7Na1dfHUUu61/kBVzsvjvt4/w2t4GLXEjMsS7S8nsrm5lT20brad6MKAo\nLZYbJqQwIzuB5JiBdiVbjjWz5VizfwuWMW1yRhypsRFsOtKkYOUnwwlW1cDgS8LyfNv+iJnNBR4E\nljvnms70RM65BxiYf0VxcbE752rHiTf2NwCwZFq6nysZsCA/mayEKFbvqlWwEvGpa+tiR2ULOypb\naDnVQ1iIMSUznmtnZDI9K17rtolfhJixqCiFl8vqaDx5etSbS8vwglUJMMXMJjAQqG4Dbh+8g5kV\nAM8An3XOHfC8ynHmjf2NTMuMJzsx2t+lAANrBy6bncWjmytoP91LnD4wZJxq6exmZ1Ur2ytbqGvr\nIsQGRgg+MiuTGdkJWkpGAsKCgiTW7qljy7ETLJud7e9yxp2zfkI653rN7F5gDQPtFh5yzpWZ2T2+\n+1cCfwekAr/wzR3odc4Vj1zZY1f76V5Kjp7grssm+LuUP7JiTjaPrD/K6/sauHFejr/LERk1rZ09\nlBw5wfaqFo4e78AB+cnR3DA3m7l5SfpDQwJOfFQ407IS2FrRwtKZWYTqAolRNax3BOfcamD1kG0r\nB33/BeAL3pY2Pr1zaOAy7CVT/dtmYaiFhcmkx0fy0u5aBSsZ87p6+nh9XwPPba/m9X2NdPf1kxYX\nwdUzMpifl0RqnE6vSGArLkxmb20b++tOMjMnwd/ljCv6UyvAvOFrs1BcNDILaZ5PP55ls7J4aksV\nnd29WlZDxpy+fsem8iae217NS7vrONnVS3p8JJ+5qJCo8BByk6J1NZ8EjamZ8cRHhVF67ISC1SjT\np2MACaQ2C2eyfE4Wv9l4jHX7G1k+R+ftJfg55yiraeP57dWs2lFDfdtp4iLDuG5WFh9bkMPFE1MJ\nCw1R004JOqEhxgUFybx5oJG2Uz0kRKtVzmhRsAoggdZmYagLJ6SSGhvBi7tqFawkqFWe6OT57dU8\nt72GQw3thIUYS6al87c35HLtjEytzSdjwsLCZNYdaGRrRTNLpgXW9JKxTMEqgARam4WhQkOM62Zn\n8dy2arp6+vThI0HlREc3L+6s4bntNe/1klpUlMw/fWw218/JJjk2ws8VingrLS6SotRYthxr5sqp\ngfm5MhYpWAWQN/Y3Mj0rcNosnMmK2dk8uqmCdQcauW5Wlr/LEflAp7r7WLunjue31/DmgUZ6+x1T\nM+P4znXT+Oi8HPJTYvxdosiIKi5K5qktVRxp6vB3KeOGglWACNQ2C0NdODGF5JhwXtpVq2AlAam3\nr593Djfx/LZq1pTV0dHdR1ZCFJ+/bAI3zc9lRna8JqHLuDE7J5EXdtSw5ag6/o8WBasAEahtFoYK\nDw3hIzOzeHFXLad7+9QQUfxi6GRy5xxVzafYXtXCzqpWOk73EhUewuycRObnJ1GUFkuIGdsrW9he\n2eKnqkVRGokXAAActElEQVRGX0RYCPPykthW2UxbVw8JWu91xClYBYiRbrPgpRVzs/ldaSVvHzzO\nNTMy/V2OjGNN7affC0tNHd2EhhjTs+KZl5fEtKz4gLy6VmS0FRcls/noCVZtr+EzFxX6u5wxT8Eq\nAAR6m4WhLpmUSmJ0OKt31SlYyahraj/NhvImtlc0U9l8CgMmpMVy5dR0ZuUkEh2hUVSRwXKToslK\niOKJ0koFq1GgYBUAAr3NwlDhoSEsnZnJ2rI6unvnEBEW+GFQgtup7j5e3VvPc9uqWeebhJ6ZEMmy\nWVnMzUskKUZX9Im8HzOjuCiZ3++sZW9tGzOy1TB0JClYBYBAb7NwJtfPyeapLVWsO9DI0pkatRLv\n9fU7NpY38ey2al7eXUf76d73JqFHhIUE9NWzIoFmfl4Sa8vq+V1JJX//0Vn+LmdMU7AKAMHQZmGo\ny6akkRobwbPbqhSs5LwMnojunKO2tYsdlS3sqGqhrauXyLAQZucOTEKf4JuELiLnJiYyjI/MyuTZ\nbdXct3y6+hCOIAUrPwuWNgtDhYeG8NH5Ofx2UwWtnT0kxuhKE/nwWjq72VHZwrbKFhpOnibEYFpm\nPNcXJDNdk9BFPHHronx+v7OWtXvq+ei8HH+XM2YpWPlZsLRZOJObL8jj4XeO8uKuWm6/sMDf5UiQ\naT3Vw0u7avnlW+UcOT7QvLAwJYab5ucwJyeRmEi9PYl46dJJaeQmRfNESaWC1QjSO5efBVObhaFm\n5SQwJSOOZ7ZWKVjJsPT29fPWweM8taWKV/bU093XT1pcBNfOyGR+fhIpWlZGZMSEhBh/VpzHT149\nSOWJTq08MEIUrPwo2NosDGVmfOKCPH708j6ONXVQmBrr75IkQB1qOMmTW6p4dms1DSdPkxIbwe0X\nFvCJC3LZVdWqTugio+TPivP56WsHeXJLFX+5dKq/yxmTFKz86N02C18LkjYLZ/KxBTn8y5p9PLO1\nmm/ql1QGaT3Vwws7anhqSxXbK1sIDTGumpbBLQvzuHp6xnttOnZXt/m5UpHxIzcpmsunpPNUaSVf\nv2YKoSH6o8ZrClZ+9G6bhSuDqM3CUNmJ0VwyKZVnt1XzjWunaORhHHt0UwX9znG4oZ0tFc3sqWl7\nr9/UitlZzMtPIj4qnBMd3Ty1pcrf5YqMW7ctyufLv93KWwcbWTIt+Ob3BjoFKz8KxjYLZ/KJBXl8\n68kdbDnWTHFRir/LET8ob2xnbVkd2ypbaD3VQ3R4KMVFKSwsSCYnKUqBWySAXDsjk5TYCH5XUqlg\nNQIUrPwkWNssnMmy2Vl8/7ndPL21WsFqHDnZ1cOLO2t5aksVpceaMWBqZjwr5mQzIyuesCCcNygy\nHkSEhXDzBbk8/M5RjrefJi0u0t8ljSkKVn7y1oHGoG2zMFRsZBjLZmfx+501/ODGmWo8N4Y55yg9\n1sxjmytYvauWrp5+JmfEcd/y6QAkRKmfmUgwuHVRPr986wjPbK3i7ism+bucMUXByk/WlNWRHBPO\noiBss3AmtyzM49lt1by4s5abF+b5uxzx2ImObp7ZWsXjJZUcamgnLjKMT1yQxyeL85mXl4iZ/VEH\ndREJbJMz4llYmMzjJZV88fKJOl3vIQUrP+ju7ee1fQ0sm5U1Zk6XXDIplckZcTy8/gifuCBXv6Rj\nQH+/Y0N5E49trmBt2UDPqQsKkviXW+Zyw9xsYiL09iESzG5dlM93n9pJ6bFmFmkah2f0zugHG8ub\nONnVy3WzsvxdimfMjM9dUsT3n9utX9Igt3LdYbYea6b0WDMnOrp9E9GTKS5KISshit4+x3Pbavxd\npoicp+vnZPMPL+zhdyWVes/2kIKVH6wpqyMmIpTLpqT5uxRPfeKCXP7l5X08/M4R/ZIGmb5+x5sH\nGnlscwWv7q2n38GEtFiunZHJrJyEoGxgKyIfLDYyjBvn5fDctmr+7saZmiPpEQWrUdbf71i7p54l\n09LH3CTvmIgwPrW4gAffPkJ1yylyk4K7jcR4UN1yiidKKnmytJKa1i5SYyO4dHIaiwpTSIvXlUIi\nY91ti/J5bHMFL+yo4dMXFvq7nDFBf4aOsm2VzTSePD2mTgMO9tmLC3HO8esNR/1diryPnr5+1pTV\ncefDm7nsR3/gZ384yKSMOH7x6QvY8L1rWD47W6FKZJyYm5fI9Kx4fruxAuecv8sZEzRiNcrWlNUT\nHmpcNT342yycSV5yDNfNyuLxzQPLJWiCs/8MvUqvqf00pcea2XqsmZOne0mICmPJ1HSKC1NIjo2g\npbNHHdFFxhkz47MXF/I3z+5ma0UzCws1jeN86VNvFDnnWFNWxyWT0sb0uew7L53AS7vreHZbtYaW\n/ay3r589tW2UHD3B4cYODJiWFc+iohSmZsZrnTAR4WPzc/nhS/v41fpjClYeGNapQDNbZmb7zeyQ\nmd13hvunm9kGMzttZt/2vsyxYX/9SY41dY7Z04DvWlSUzKycBB5556iGlv3kUMNJVu+q5Ycv7+Px\nkkpOdHRz7YxMvrtsOndcXMSM7ASFKhEBBiax37Iwj5d219J48rS/ywl6Zx2xMrNQ4H5gKVAFlJjZ\nKufcnkG7nQC+BnxsRKocI17eXYcZLJ2Z6e9SRpSZcdelE/jWkztYu6d+zAfJQNHZ3cuLO2v5XUkl\npceaCTGYmZ3AoqIUJmXEEaLeYiLyPj57USEPv3OUxzdX8NVrpvi7nKA2nFOBi4FDzrlyADN7HLgJ\neC9YOecagAYzu35Eqhwj1pTVU1yYTPo4mBh80/wc7n/jED96eR/XTM8YM41QA41zjt3VbTxeUsGq\n7TWcPN3LxPRY/nrFdMCIi9TZfhE5u4npcVw+JY3fbqrgS0sm6T37PAznlcsFKgfdrvJtk3NQ0dTJ\n3tq2cTN6ExYawn3LplPe2MHvSivP/gA5J62nevj1hqNc/7O3ufHnb/P01iqWzsrkyXsu5rW/vJK7\nr5ikUCUi5+SOi4uoa+vilT31/i4lqI3qO6+Z3Q3cDVBQUDCah/a757ZXA7Bs9vgIVjBwynNRUTL/\n/spBPjY/l1h90H9oj24auBT6aFMnpUdPsKu6ld5+R05iFB+dl8O8vCSiI0I5WN/Owfp2f5crIkHo\n6ukZ5CZF8+sNx1g+J9vf5QSt4XzSVQP5g27n+badM+fcA8ADAMXFxeNmVrNzjqe2VHHJpFTykmP8\nXc6oMTO+t2IGn/jFen75VjnfuHaqv0sKSjUtp3hjfwNbK5o53t5NZFgICwsHlphRE1YR8UpoiPHp\niwr4l5f3c7D+JFMy4/1dUlAaTrAqAaaY2QQGAtVtwO0jWtUYU3K0mYoTnXzj2vE3IfCCgmRWzMni\ngTfLuf3CAjLio/xdUlDo7O7l5d11PL21ivWHm3AOClNjWDI1g9m5iUSEaf6DiHjv1uJ8fvLqQR5Z\nf5R//vgcf5cTlM4arJxzvWZ2L7AGCAUecs6Vmdk9vvtXmlkWUAokAP1m9g1gpnOubQRrDxpPbakk\nNiJ0XJ0GHOw7101nbVk9P331oH5RP0B/v2PjkSae3lLNS7tr6ezuIz8lmq9dPYWwECM1buxf9CAi\n/pUaF8nH5+fy1JYqvnHt1HFxsZXXhjXpxTm3Glg9ZNvKQd/XMXCKUIZ49xL4FXOyx20X8glpsXz6\nwgL+Z1MFty0qYE5eor9LChjOOfbVnWTVjhpWba+huuUUcZFh3Dg3h09ckMuiohRCQuxPuqiLiIyU\nv7hyIk9sqeThd47w3WXT/V1O0Bmfn/SjaE1ZHR3dfdyycHznzm8uncraPfV89bGt/P5rl4/7K9aO\nHu8YCFM7ajjU0E5oiHHp5DS+u2waH5mZRXTE2FqgW0SCx8T0OFbMzuY3G45xz5JJY3qlkJEwvj/d\nRsFTW6ooSIlhUdH4XiYgKSaCn962gNse2MDfPLuLn9w6HxtnDStrW0/xjy/sYUdVK9UtpwAoSo3h\no/NymJ2bSFxkGB2n+3h224e6NkRExDNfWjKJF3fV8j8bj/HlJZP9XU5QUbAaQVXNnaw/3MTXr5lC\niJYPYfGEFL557VT+7ZUDXDopjU8uyj/7g4Jc5YlO1pTV8fLuOrZUNOMc5CZFs3x2FnNyE0mKifB3\niSIif2J2biKXT0njobePcNelE4gK1yj6cClYjaBnt1bjHNx8wfg+DTjYl6+azIbyJv5u1W4WFCSN\nyct5Dze28/LugTC1q7oVgBnZCXzz2qngIE2TQUUkCHx5yWQ+9cuNPFlayWcvLvJ3OUFDwWqEOOd4\nemsVF01MIT9l/PSuOpvQEOMnt85n+U/f4t5Ht/HUly4mPsjP37+7rMwre+p4uayOA74GnfPzk/je\n8ulcNyuLorRYAE1CF5GgcdHEFBYUJPFfb5bzqcUFWuZmmBSsRsiG8iaONnXylat0bnqojIQofnLb\nfO58uIRP/XIjv7pzcdC1EnjknaOUN7azt+4k++vaaOvqxYCitFhumJvNzOyE907zrT/cxPrDTf4t\nWETkHJkZX14ymS/+upQXdtbw8QU6+zIcClYj5L/WlZMaG8GN83L8XUpAunxKOg/csZAv/c9WPvlf\nG/ifL1xIdmJgdxGvb+vitb0NvLa3njcPNtLT54gIC2FKRhwzshKYmhU/7q92FJGx5ZrpGUzPiucn\nrx7k+jk5ak48DPoUGAFlNa2sO9DId66bpgl/H+Dq6Zn8+q7FfP5XpdzynwPhaoLvlFkg6Orpo/Ro\nM28dbOTNg8fZWzvQ7zY3KZqFhSnMyIpnQlqshsdFZMwKCTH+avl07ny4hF9vOMoXLp/o75ICnoLV\nCFi5rpy4yDA+c1Ghv0sJeBdOTOWxL17Enz+8mT9buZ4f3DiLG+Zm+6UVg3OOA/Xt7wWpTeVNnO7t\nJzzUKC5M4TvXTeOaGRlMy4znsc2Vo16fiIg/LJmazuVT0viPPxziloV5upr5LBSsPFbR1MmLO2v4\n4uUTSYwO7knZo2VOXiJP/MXFfO2xbXz1sW38ZuMx/v7GWczMSRjR4/b29bOv7iQr1x3mWFMnR5s6\nONnVC0B6fCQLC5OZkhFHUVoskWEDI49bj7Ww9VjLiNYlIhJIzIy/uX4GK376Fj977RB/d+NMf5cU\n0BSsPPbAW4cJCwnhrssm+LuUoDI5I44XvnoZj5dU8P/W7OeG/3iL2xYXcGtxPnPzEj0ZwWo/3cu2\nimZKjzaz5Vgz2yqa6ejuAyAxOpwJabFMTo9jckac/iITERlkelYCnyzO5zcbj3LHxYXvXeksf0rB\nykONJ0/zRGkVNy/MJTMhyt/lBJ3QEOPTFxZy/Zxs/v2VA/x2UwWPbqogOzGK62Zlcc2MDCakxZKV\nEPW+85qcc5zo6Ka2tYvKE53srz/J/rqBr6NNHfQ7CDGYlpXAzQvzWFiYTHXzKQUpEZGz+MuPTGXV\njhp++NI+Vn52ob/LCVgKVh56+J0j9PT1c/cVk/xdSlBLiong/9w0m29cO5XX9jWwpqyOxzZX8Mj6\no8BAAMtKiCI9PhLnHL39jt4+x6mePurauuju7X/vucygMCWGaVnx3Dgvh4WFySwoSPqj3lnqLSUi\ncnYZ8VHcc+UkfvzKATYfOcHiCeN7qbb3o2DlkbauHn6z4RjLZ2cF1JVtXvkw4eP2CwvO65jJsRHc\nsjCPWxbm0dndy5ZjzVQ1n6Km5RTVzadobD9NiBnhoUZoiBEVHkpWQhRZiVFkJ0aTmxTNpIxYYiL0\nz1xExAtfvHwij22u4PvP7WLVvZfpyvcz0CeOR3689gDt3b1arHKExESEcfmU9A/cZ3D4O9HRzYmO\n7veWlBERkfMXHRHK//3EHD73cAn/b81+vn+DJrIPpQY8HthZ1cKvNhzlsxcVMjs30d/liIiIjJgl\n0zL47EWFPPj2EdYfPu7vcgKORqzOU29fP3/97C7S4yL59nXT/F3OmKA5TyIige17K6bz9qHjfPuJ\nHbz8zStICPI1X72kEavz9KsNx9hd3cYPbpylf1giIjIuxESE8eNPzqP+5Gn+/vkyf5cTUDRidR5q\nW0/x47X7WTItnRVzsvxdTsDRyJOIyNi1oCCZe6+azE9fO8hV0zO0Nq6PRqzOw9+vKqPPOf7xptl+\nWYJFRETEn+69ejILCpL49pM72HLshL/LCQgKVh/So5sqWFNWz9evmUp+Soy/yxERERl14aEhPHhH\nMTlJ0dz1SCkH6k/6uyS/U7D6EF7f18DfPr+bJdPS+eLlWrpGRETGr9S4SH5912IiwkL484c2U9Ny\nyt8l+ZWC1TnaVdXKVx7dyozseO6//YL3XVpFRERkvMhPieFXdy6mvauXOx7aTEtnt79L8hulgnNQ\neaKTu35VQnJMBA99bhGxkZr7LyIiAjAzJ4EH7iimoqmTT/7XBo41dfi7JL9QsBqm+rYu7nykhNM9\nffzqrkVkxGuRZRERkcEunpTKw3cuor7tNB/9+Tu8fXD8NRBVsBqG9YePc/3P3qKm5RQP3FHM5Ix4\nf5ckIiISkC6dnMYL915GVkIUdzy0iQffKsc55++yRo2C1Qfo73fc//ohPvPgJpJiInj+K5dy0cRU\nf5clIiIS0ApSY3jmy5dw3aws/unFvXzx16UcOT4+Tg0qWL2PiqZOvvDrUv51zX6un5vD81+5lCmZ\nGqkSEREZjtjIMO6//QK+f/0MNpafYOmP1/EPL+wZ8xPbNft6iPLGdn7++iGe315DaIjxDzfN4rMX\nFaoBqIiIyDkKCTG+cPlEbpqfy49f2c8j64/w9NYq7ry0iJsvyBuTfSCHFazMbBnwUyAUeNA598Mh\n95vv/hVAJ/A559xWj2sdMZ3dvbx98Dgv7KzlxZ01RISF8LlLirj7iolkJmiSuoiIyPlIj4/k/35i\nLndcXMSPXt7HT187yE9ePcjFE1O5ZWEe187MJDF6bKy3e9ZgZWahwP3AUqAKKDGzVc65PYN2Ww5M\n8X1dCPyn778B6URHNwfrT1JW08YbBxrZWN5Ed28/8ZFhfPGKiXzhsomkx0f6u0wREZExZUZ2Ao/c\nuZiq5k6e3VrNU1ur+NaTOzCDaZnxLCpKYdGEFGZmx5OXHENUeKi/Sz5nwxmxWgwccs6VA5jZ48BN\nwOBgdRPwazcw7X+jmSWZWbZzrtbziofpePtpXtpVS1NHNyc6umnq6Kbx5GnKG9s53v6/53cnpsVy\nx0WFXD09g+KiFCLCNO1MRERkJOUlx/DVa6Zw79WT2VrRzNsHmyg9doJntlbxm43HADCDnMRoClJi\nyEyIJCkmgsTocJJjwomOCCUsJITwsBDCQ4zC1Fhm5iT4+acaMJxglQtUDrpdxZ+ORp1pn1zAr8Hq\nb58vAyAxOpzU2AhS4yK4enoGUzPjmZwRx7SseLITo/1VooiIyLhmZiwsTGFhYQoAvX397Ks7yaGG\ndo42dXCsqZNjTR1srWihpbObtq7eMz7PZy4q4J8+Nmc0S39fozp53czuBu723Ww3s/2jefwxJg0Y\nf53XvKPX78PTa3d+9PqdH71+H9Kn/V3ACPpn39cIKxzOTsMJVtVA/qDbeb5t57oPzrkHgAeGU5h8\nMDMrdc4V+7uOYKXX78PTa3d+9PqdH71+EuiGM6GoBJhiZhPMLAK4DVg1ZJ9VwB024CKg1Z/zq0RE\nRET84awjVs65XjO7F1jDQLuFh5xzZWZ2j+/+lcBqBlotHGKg3cKdI1eyiIiISGAa1hwr59xqBsLT\n4G0rB33vgK94W5qchU6pnh+9fh+eXrvzo9fv/Oj1k4Bm42lhRBEREZGRpKZNIiIiIh5RsAoyZrbM\nzPab2SEzu8/f9QQbM3vIzBrMbLe/awk2ZpZvZq+b2R4zKzOzr/u7pmBiZlFmttnMdvhev//j75qC\njZmFmtk2M/u9v2sReT8KVkFk0PJCy4GZwKfMbKZ/qwo6jwDL/F1EkOoFvuWcmwlcBHxF//7OyWng\naufcPGA+sMx3FbUM39eBvf4uQuSDKFgFl/eWF3LOdQPvLi8kw+ScexM44e86gpFzrvbdxdWdcycZ\n+IDL9W9VwcMNaPfdDPd9aZLrMJlZHnA98KC/axH5IApWweX9lg4SGVVmVgQsADb5t5Lg4juVtR1o\nAF5xzun1G76fAN8F+v1diMgHUbASkXNiZnHA08A3nHNt/q4nmDjn+pxz8xlYnWKxmc32d03BwMxu\nABqcc1v8XYvI2ShYBZdhLR0kMlLMLJyBUPVb59wz/q4nWDnnWoDX0Xy/4boU+KiZHWVgCsTVZvY/\n/i1J5MwUrILLcJYXEhkRZmbAfwN7nXM/9nc9wcbM0s0syfd9NLAU2OffqoKDc+57zrk851wRA+97\nf3DOfcbPZYmckYJVEHHO9QLvLi+0F3jCOVfm36qCi5k9BmwApplZlZl93t81BZFLgc8yMFqw3fe1\nwt9FBZFs4HUz28nAH0mvOOfUNkBkjFHndRERERGPaMRKRERExCMKViIiIiIeUbASERER8YiClYiI\niIhHFKxEREREPKJgJSIiIuIRBSsROSsz6/P1rSozsx1m9i0zC/HdV2xmP/uAxxaZ2e2jV+2fHPuU\nb32+gGBmt5rZITNTDyuRMUjBSkSG45Rzbr5zbhYDHcOXAz8AcM6VOue+9gGPLQL8Eqx8DvvW5xs2\nMwsdqWKcc78DvjBSzy8i/qVgJSLnxDnXANwN3GsDlrw7+mJmVw7qyr7NzOKBHwKX+7Z90zeK9JaZ\nbfV9XeJ77BIze8PMnjKzfWb2W98yOpjZIjNb7xst22xm8WYWamb/amYlZrbTzP5iOPWb2XNmtsU3\n+nb3oO3tZvZvZrYDuPh9jjnL9/123zGn+B77mUHb/+vdYGZmy3w/4w4ze83D/w0iEqDC/F2AiAQf\n51y5LzxkDLnr28BXnHPvmFkc0AXcB3zbOXcDgJnFAEudc12+YPIYUOx7/AJgFlADvANcamabgd8B\ntzrnSswsATgFfB5odc4tMrNI4B0zW+ucO3KW8u9yzp3wrddXYmZPO+eagFhgk3PuW761OPed4Zj3\nAD91zv3Wt0+omc0AbgUudc71mNkvgE+b2UvAL4ErnHNHzCzlnF9oEQk6ClYi4qV3gB+b2W+BZ5xz\nVb5Bp8HCgZ+b2XygD5g66L7NzrkqAN+8qCKgFah1zpUAOOfafPd/BJhrZrf4HpsITAHOFqy+ZmYf\n932f73tMk6+Wp33bp73PMTcAf2Nmeb6f76CZXQMsZCCkAUQDDcBFwJvvBj3n3Imz1CUiY4CClYic\nMzObyEAQaQBmvLvdOfdDM3sRWMHACNJ1Z3j4N4F6YB4D0xG6Bt13etD3fXzwe5QBX3XOrTmHupcA\n1wIXO+c6zewNIMp3d5dzru+DHu+ce9TMNgHXA6t9px8N+JVz7ntDjnXjcOsSkbFDc6xE5JyYWTqw\nEvi5G7KKu5lNcs7tcs79CCgBpgMngfhBuyUyMBrUD3wWONtE8f1Atpkt8h0j3szCgDXAl8ws3Ld9\nqpnFnuW5EoFmX6iazsCo0rCP6QuU5c65nwHPA3OB14BbzCzDt2+KmRUCG4ErzGzCu9vPUpuIjAEa\nsRKR4Yj2nZoLB3qB3wA/PsN+3zCzq4B+oAx4yfd9n29S+CPAL4CnzewO4GWg44MO7JzrNrNbgf/w\nzYs6xcCo04MMnCrc6pvk3gh87Cw/x8vAPWa2l4HwtPEcj/lJ4LNm1gPUAf+fb77W94G1NtCCooeB\neWYbfZPjn/Ftb2DgikoRGcNsyB+cIiJjhpkVAb93zs32cyl/xHdK8v9v5w5OAABhGADWCdx/SicQ\nfAhOEFDkboI+Q1p6DvqBf1gFAj+bVdXbYw9Ca7d24/YsQJ7GCgAgRGMFABAiWAEAhAhWAAAhghUA\nQIhgBQAQsgA6T9YGw5nBsgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(uds['uds_ra'], uds['uds_dec'])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-27T13:11:22' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-27T13:11:22' [astropy.utils.metadata]\n" + ] + } + ], + "source": [ + "# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, uds, \"uds_ra\", \"uds_dec\", radius=0.8*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add VIPERS" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAF3CAYAAACfXf7mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4XdWB7v/vOke9995ccZG73IBAIBSbZodOKCEJGCYw\nM8nMnTu5M8n87iS5mcydkkkmyRBCEobeAgaMscFUU1zkLtmWLRf1LqtZ9eis3x82ucYYLNvS2ae8\nn+fhQeecva33gCW9WmvvtYy1FhEREREZWy6nA4iIiIiEApUuERERER9Q6RIRERHxAZUuERERER9Q\n6RIRERHxAZUuERERER9Q6RIRERHxAZUuERERER8YUekyxiwxxlQYYyqNMd87xevLjDE7jTHbjTGl\nxpgLR3quiIiISCgwp1uR3hjjBvYBlwO1wGbgNmvt7hOOiQOOWmutMWYm8Jy1dspIzhUREREJBWEj\nOGYBUGmtPQhgjHkGWAb8qThZa3tOOD4WsCM991TS0tJsUVHRCN+CiIiIiHO2bNnSaq1NP91xIyld\nuUDNCY9rgYUnH2SM+SrwT0AGcPWZnHv8/BXACoCCggJKS0tHEE1ERETEWcaYqpEcN2oX0ltrX7LW\nTgGWAz86i/MfttaWWGtL0tNPWxZFREREAspISlcdkH/C47zjz52StfZ9YLwxJu1MzxUREREJViMp\nXZuBScaYccaYCOBW4JUTDzDGTDTGmOMfzwUigbaRnCsiIiISCk57TZe11mOMeRBYC7iB31try40x\n9x9//SHgBuAuY8wQ0AfcYo/dFnnKc8fovYiIiIj4rdMuGeGEkpISqwvpRUREJBAYY7ZYa0tOd5xW\npBcRERHxAZUuERERER9Q6RIRERHxAZUuERERER9Q6RIRERHxAZUuERERER9Q6RIRERHxAZUuERER\nER847Yr0IiIip/PUxmqnI/jE1xYWOB1BAphGukRERER8QKVLRERExAdUukRERER8QKVLRERExAdU\nukRERER8QKVLRERExAdUukRERER8QKVLRERExAdUukRERER8QKVLRERExAdUukRERER8QKVLRERE\nxAdUukRERER8QKVLRERExAfCnA4gMhJPbax2OoJPfG1hgdMRRERkjGikS0RERMQHVLpEREREfECl\nS0RERMQHVLpEREREfEClS0RERMQHVLpEREREfEClS0RERMQHVLpEREREfEClS0RERMQHVLpERERE\nfEClS0RERMQHVLpEREREfEClS0RERMQHVLpEREREfEClS0RERMQHVLpEREREfEClS0RERMQHVLpE\nREREfEClS0RERMQHVLpEREREfEClS0RERMQHRlS6jDFLjDEVxphKY8z3TvH67caYncaYXcaYj4wx\ns0547fDx57cbY0pHM7yIiIhIoAg73QHGGDfwK+ByoBbYbIx5xVq7+4TDDgEXW2uPGGOWAg8DC094\n/RJrbeso5hYREREJKCMZ6VoAVFprD1prB4FngGUnHmCt/chae+T4ww1A3ujGFBEREQlsIylduUDN\nCY9rjz/3eb4FvH7CYwusM8ZsMcasOPOIIiIiIoHvtNOLZ8IYcwnHSteFJzx9obW2zhiTAbxpjNlr\nrX3/FOeuAFYAFBQUjGYsEREREceNZKSrDsg/4XHe8ec+xRgzE3gEWGatbfvkeWtt3fF/NwMvcWy6\n8jOstQ9ba0ustSXp6ekjfwciIiIiAWAkpWszMMkYM84YEwHcCrxy4gHGmALgReBOa+2+E56PNcbE\nf/IxcAVQNlrhRURERALFaacXrbUeY8yDwFrADfzeWltujLn/+OsPAf8ApAK/NsYAeKy1JUAm8NLx\n58KAp6y1a8bknYiIiIj4sRFd02WtXQ2sPum5h074+B7gnlOcdxCYdfLzIiIiIqFGK9KLiIiI+IBK\nl4iIiIgPqHSJiIiI+IBKl4iIiIgPqHSJiIiI+IBKl4iIiIgPqHSJiIiI+IBKl4iIiIgPqHSJiIiI\n+IBKl4iIiIgPqHSJiIiI+IBKl4iIiIgPqHSJiIiI+IBKl4iIiIgPqHSJiIiI+IBKl4iIiIgPqHSJ\niIiI+ECY0wFERCTwDXq8VDZ3c6D1KD39HnoHPfQODjPo8ZIWF0lmQhRZiVHkJEWRER/ldFwRR6h0\niYjIWekfGmbVzgbWljfybkUzQ8OWCLeLhOgwYiLCSIwOJ8ztorV7gMrmHoatBaAwJYYvTUpjSnYC\nLmMcfhcivqPSJSIiZ2TQ4+XZ0hp++fZ+mroGyEmMoqQwhWk5CRSlxuJ2fbZIebxeWrsHOdDSw0cH\nWnliYzWpsRFcOCmN+UUpKl8SElS6RERkRLxey4vb6viPdfuoPdLH/KJkfnbLbBaPT+XpTTVfeG6Y\ny0VW4rEpxkXjUymv72T9/lZe3l7PrtpObp6fT0JUuI/eiYgzVLpEROS06jv6+OvndvDxwTZm5Cby\n4+XFXDw5HXMWI1Rul2FmXhIzchPZWn2EV3bU859v7efmknwmZcaPQXoR/6DSJSIiX+jl7XV8f2UZ\nXq/ln2+Ywc0l+WdVtk5mjGFeYQp5yTE8vamaRz86zMWT07lsWqamGyUoqXSJiMgpdfcP8fcvlfHK\njnrmFSbzs5tnU5AaM+qfJzMhim9/eSKrdtbz7r4WegeHWTY7Z1SKnYg/UekSEZHPqOvo41uPbmZ/\ncw9/fflk/uzLEwhzj93SjhFhLq6fm0dsZBjv7Wsh3G24aka2ipcEFZUuERH5lB01HXzrv0sZ8Azz\n6Dfm86VJ6T773FdMy2Rw2MuHB9oID3NxxbQsn31ukbGm0iUiIn+ypqyB7zy7nbS4SJ6+d6HPL2w3\nxnDNjGyGPF7erWghwu3iy+dl+DSDyFhR6RIREQCe2FDFD14uY3Z+Er+9q4S0uEhHchhjWD4nF4/X\n8sbuJlJiI5iZl+RIFpHRpL0XRUSEP3x4iO+vLOPS8zJ4+t5FjhWuT7iM4Ya5eeQnR/PStjraegYc\nzSMyGlS6RERC3G/fP8g/vrqbK6dn8l93zCMq3O10JODYel63zi/AGHhmcw2eYa/TkUTOiUqXiEgI\n+9U7lfyf1Xu4ekY2v/zaXCLC/OvHQnJsBDfOzaOuo4+15Y1OxxE5J/711SUiIj7z8PsH+Je1FSyb\nncPPb51N+BguCXEupuUksnhCKh8eaGNPQ5fTcUTOmn9+hYmIyJh6dnM1P1m9l6tnZvPvN88e0zW4\nRsPS6VnkJEXxwpZauvqGnI4jclb8+6tMRERG3eu7GvhfL+7iosnp/Ozm2bhd/r8AaZjbxa3zCxga\n9rK6rMHpOCJnRaVLRCSErN/fwl8+s53Z+Uk8dIf/XcP1RdLiIrlocjo7azupbO5xOo7IGQucrzYR\nETknO2o6uO/xLYxPj+UPdy8gJiLwlmq8eHI6KbERvLqjHo9XdzNKYFHpEhEJATXtvXzrvzeTEhvB\nY99cQGJMuNORzkq428W1M7Np6Rngw/2tTscROSMqXSIiQa6zd4hvPLqZQY+XR78xn4yEKKcjnZPz\nshKYlp3A2xXNHOkddDqOyIipdImIBLEBzzD3PVFKVdtRHr6rhIkZvt1LcaxcPTMbgNd26qJ6CRwq\nXSIiQcpay/f+uIsNB9v5lxtnsWh8qtORRk1yTASXnpfB7oYuDrToonoJDCpdIiJB6j/fruSlbXX8\njysms3xOrtNxRt35E9NIiArjzd1NWGudjiNyWipdIiJBaE1ZA//+5j6un5PLA5dMdDrOmAh3u7hk\nSgbV7b3sa+p2Oo7Iaal0iYgEmd31XXz32R3MKUjiJ9fPwBj/X/z0bM0rTCY5JlyjXRIQVLpERIJI\na88A9z5WSmJ0OL+5Yx5R4W6nI42pMJeLr0zJpL6zn/J67cso/k2lS0QkSAx6vPzZE1to7Rng4bvm\nBfzSECM1uyCJ9LhI1u1pwqvRLvFjIypdxpglxpgKY0ylMeZ7p3j9dmPMTmPMLmPMR8aYWSM9V0RE\nzp21lh+sLGPz4SP8602zmJmX5HQkn3EZw1emZtDcPcDO2k6n44h8rtOWLmOMG/gVsBSYBtxmjJl2\n0mGHgIuttTOAHwEPn8G5IiJyjh796DDPltbw4CUTuXZWjtNxfK44N5HsxCje2tPEsFejXeKfRjLS\ntQCotNYetNYOAs8Ay048wFr7kbX2yPGHG4C8kZ4rIiLnZv3+Fn60ajdXTMvkry6f7HQcR7iM4StT\nMmk7OkhZvUa7xD+NZLfTXKDmhMe1wMIvOP5bwOtnea6ISFB5amP1mP75rd0D/Pq9SjLio1g8IZVn\nNtec/qQgNSU7nrS4SNbvb2FmbmJQ37UpgWlUL6Q3xlzCsdL1t2dx7gpjTKkxprSlpWU0Y4mIBKX+\noWEe21CFyxjuXFRIZFhw36l4Oi5j+NLENOo7+jnUetTpOCKfMZLSVQfkn/A47/hzn2KMmQk8Aiyz\n1radybkA1tqHrbUl1tqS9PT0kWQXEQlZXmt5ZnM17UcHuH1hIcmxEU5H8guzC5KIjQxj/f5Wp6OI\nfMZIStdmYJIxZpwxJgK4FXjlxAOMMQXAi8Cd1tp9Z3KuiIicuTfKm9jX1MO1s3IYlxbrdBy/Ee52\nsXh8ChVN3TR39TsdR+RTTlu6rLUe4EFgLbAHeM5aW26Mud8Yc//xw/4BSAV+bYzZbowp/aJzx+B9\niIiEjO01Hby/v4UF41JYOC54NrEeLQvHpRLuNnxQqdEu8S8juZAea+1qYPVJzz10wsf3APeM9FwR\nETk7dUf6eHFrLUWpsVwzM9vpOH4pNjKMuQXJlFYd4fJpmcRHhTsdSQTQivQiIgGju3+IJzZWERcZ\nxtcWFhDm0rfwz3PhxDS8XsuGg22nP1jER/QVKyISADzDXp7cWE3voIc7FhUSFzmiiYqQlRoXydTs\nBDYcbGfQ43U6jgig0iUi4vestbyyo57q9l5umJtHTlK005ECwgUT0+gbGmZnbYfTUUQAlS4REb+3\n4VA7pVVH+PLk9JDaU/FcFaXGkBEfyabD7U5HEQFUukRE/NqBlh5e21nPlKx4LpuW6XScgGKMYeH4\nVGqP9FF3pM/pOCIqXSIi/qr96CBPb6omNS6Sm0vycWlbmzM2Jz+JcLdh02FdUC/OU+kSEfFDA55h\nnthQhdda7lxUSFR4aG/xc7aiwt3Myktie00H/UPDTseREKfSJSLiZ7zW8sKWWpq6+rl1fgFpcZFO\nRwpoC8elMjRs2VajC+rFWSpdIiJ+5p2KZsrru1hSnMXkzHin4wS83ORocpOi2XSoDWut03EkhKl0\niYj4kd31nby1p5k5+UlcODHN6ThBY+G4FJq6Bqhu73U6ioQwlS4RET/R0NnHc1tqyUuOZvmcXIwu\nnB81M/OSiAxzsfGQlo8Q56h0iYj4ga7+IR77uIqoMBe3Lywk3K1vz6MpIszFnIJkdtV10jvgcTqO\nhCh9VYuIOGzQ4+Xxj6voGxzmrsVFJEZrg+axML8omWGvZYdWqBeHqHSJiDjIay3PltZQ39HHLfPz\ntcXPGMpOjCYnMYqt1Spd4gyVLhERB60pa2RPQxdXz8xmanaC03GC3tzCZOo6+mjs6nc6ioQglS4R\nEYdsONjGB5WtLBqfyvkTdKeiL8zMS8JlYFvVEaejSAhS6RIRccC+pm5W7aznvMx4rp6R7XSckBEX\nGcaUrAS21XQw7NWaXeJbKl0iIj7W2NnP05uqyUyI4tb5+bhdWhrCl+YWJNMz4GF/c7fTUSTEqHSJ\niPhQV/8Q//3xYSLDXNy1uIhI7anoc+dlxRMb4dYF9eJzKl0iIj6ipSH8g9tlmJWfxJ6GLnoHtWaX\n+E6Y0wFERou1lsNtvWypaqer38Ow1zLstXitJTcpmpl5SRSmxuDSKt/igGGv5alNVdR39HHHokIt\nDeGwuQXJfHSgjZ21nSwan+p0HAkRKl0S8AY8w2yv6WDDwTaaugaICneRER+Fyxgi3C4slq3VR9h4\nqJ2EqDBm5iWxeEIqyTERTkeXEOG1lhe31rKvqYevzs7V0hB+ICcpmuzEKLZWH1HpEp9R6ZKAdrj1\nKE9uqubogIecxCiun5PLzLwkIsI+PXM+4Blmb0M3O2o7+PhAG5sOt7O0OIsFRSna307G3NryRrbV\ndHDZ1Azmj0txOo4cN6cgmdW7Gmju6icjIcrpOBICVLokYG2pamfltnqSY8O5Y+F4ClJiPrdARYa5\nmZWfxKz8JI70DvLi1lpe3l5PeX0X18/JJUmjXjJGPtjfwvr9rSwcl8Il52U4HUdOMDMvkdd3NbCj\ntpPLp6l0ydjThfQScLzWsnpXA3/cWse4tFj+7OKJFKbGjnjEKjkmgm9eMI5ls3Oobuvl52/tp6yu\nc4xTSyj645ZaVpc1UpyTwLWzcjSq6mcSosIZnx7LztoOrNWaXTL2VLokoAx7LU9sqPrTKt5fP7+I\n6Igzv+XeGMPCcan8xVcmkREfydObqtmiFaplFL2+q4G/eWEHE9JjuakkXzdw+KlZeUm0HR2krqPP\n6SgSAlS6JKCsLmtgb2M318zM5rpZOee8qGRKbATfunA8EzLi+OPWWj460DpKSSWUvbevhb94Zhuz\n85O4Y1Eh4W59q/VX03MScbsMO2q0ZpeMPX0nkICxpaqdjw+0ccGE0d2nLiLMxV2LCpmWncCqnQ28\nW9GsqQY5a5sPt3Pf46VMzIjnD99YQGSYFj/1Z9ERbs7LjGdnXSdefd3LGFPpkoBQ097Lyu31TEiP\nZUnx6O9TF+Z2cduCAmbnJ/HG7ibeqWgZ9c8hwW9nbQff/MNmchKjefxbC7T4aYCYlZ9Ed7+HQ61H\nnY4iQU6lS/xec1c/T26sIiEqjNvmF4zZPnVul+HGeXnMyU9i3Z4mtlXrGi8ZubK6Tu54ZCOJMeE8\ncc9C0uIinY4kIzQlK56IMJemGGXMqXSJXxv2Wr795Fb6hoa5Y1EhMZFju8qJyxi+OjeXcWmxvLi1\nTr/5yoiU13dy+yMbiY8K5+l7F2m1+QAT7nYxPTuBsvpOPMNep+NIEFPpEr/25MYqSquOsHx2LtmJ\nvvlBFuZyccfCQlJiI3hiQxUt3QM++bwSmPY0dHHHIxuJjXDzzIpF5KfEOB1JzsLMvCT6h7zsb+5x\nOooEMZUu8VvN3f38y5oKLpyYxuz8JJ9+7ugIN18/vwiXgf/++DA9A9oUVz5rT0MXtz+ykcgwN0+r\ncAW0iRlxxES42a4pRhlDKl3it/7Pa3sY8Hj54bLpjiwqmRIbwV2Li+jqG+KZzdW6s0k+ZVdtJ7f9\ndgMRbhdPr1hEYWqs05HkHLhdhhm5iext7GLAM+x0HAlSKl3ilz6sbOXl7fXc/+UJjE+PcyxHfkoM\ny2bncrDlKG/taXIsh/iXLVVH+NojG4iLDOO5+xYzLk2FKxjMzEtiaNiyt7Hb6SgSpFS6xO8MeIb5\nwctlFKTE8O0vT3A6DvMKk5lXmMw7FS1U6JtxyNt4sI27freR1NgInrtvMQWpmlIMFoWpMcRHhWlb\nMBkzKl3id377/kEOthzlh8umExXuHwtLXjcrh6yEKJ4rraGjd9DpOOKQdyua+fofNpGdFM1z9y3W\nXYpBxmUM03MSqWjs1hSjjAmVLvErzd39/PKdSpYWZ/Hl8zKcjvMn4W4XX1tYgNdantpUjcer28pD\nzcvb67jnv0uZkB7HMysWkZEQ5XQkGQMzchPxeDXFKGNDpUv8ym/eO8jQsOVvl0xxOspnpMVFcsPc\nPGqP9LG2rNHpOOJDj398mO88u525hck8vWKRFj4NYp9MMe6q1RSjjD6VLvEbzd39PLGhiuWzcyny\n0wuTi3MTWTQ+lQ8PtOn6rhBgreXn6/bzg5fL+cqUTB775gISorS1TzBzGUNxTiL7mroZGNIUo4wu\nlS7xG7957yAer+XPL53odJQvtLQ4i8yESF7YWkt3/5DTcWSMeIa9/P3KMn62bh83zM3joTvm+s01\nhjK2ijXFKGNEpUv8QnPXsVGur87x31GuT4S7Xdw6v4CBoWFe2FKr9buC0NEBDyse38JTG6u5/+IJ\n/MuNMwlz69tlqPjTFKPuYpRRpu8i4hceCpBRrk9kJkRx1Yxs9jf38FFlq9NxZBQ1d/dz68MbeLei\nmR8tL+Z7S6fgGqNN1sU/aYpRxopKlziuuaufJzdWcf2c3IBa1XvhuBSmZiewtryJ+o4+p+PIKNjf\n1M31v/6IyuYeHr6zhDsXFTodSRyiKUYZCypd4rj/eu8AHq/lwQAZ5fqEMYbr5+QSG+nmmc01DHq0\njEQge7eimet//RH9Q16eXrGIy6ZlOh1JHKQpRhkLIypdxpglxpgKY0ylMeZ7p3h9ijHmY2PMgDHm\nf5z02mFjzC5jzHZjTOloBZfg0H50kKc2VvPVABvl+kRsZBg3leTT1jPAqp31TseRs2Ct5dEPD/HN\nRzeTlxLDyw9e4PMN1sX/aIpRxsJpS5cxxg38ClgKTANuM8ZMO+mwduAvgH/9nD/mEmvtbGttybmE\nleDz9KZqBjxeVlw03ukoZ21CehwXTU6ntOqIfisOMEPDXn7wchn/+9XdXDolkxfuX0yuVpmX4z6Z\nYqxo0hSjjI6RjHQtACqttQettYPAM8CyEw+w1jZbazcDun9eRmxo2MvjH1dx4cQ0JmfGOx3nnFw2\nNZO85Ghe2larbYICRGvPALc/spEnNlRz30Xj+c2d84iNDHM6lviRwtQYYiPDKK/vcjqKBImRfIfJ\nBWpOeFwLLDyDz2GBdcaYYeA31tqHz+BcCWJryhpp7Ornx8uLnY5yztwuwy0l+fzynUqeLa3hngvH\n49Ydb1/oqY3Vjn3uuiN9PLGxiqMDHm6al0dhaizPbq45/YkSUlzGMC07gR21HQwNewnXsiFyjnzx\nN+hCa+1sjk1PPmCMuehUBxljVhhjSo0xpS0tLT6IJU77w4eHKEyN4dIp/rPH4rlIjYvkulk5VLX1\n8u6+ZqfjyOfYWn2E37x/AAPcd/EE5hQkOx1J/Nj0nAQGPV4ONPc4HUWCwEhKVx2Qf8LjvOPPjYi1\ntu74v5uBlzg2XXmq4x621pZYa0vS09NH+sdLgNpR08HW6g6+vrgoqNZAmlOQzOz8JN7e00xV21Gn\n48gJhoa9rNxWxwtbailIieHbl0zU9VtyWuPTY4kKd2mKUUbFSErXZmCSMWacMSYCuBV4ZSR/uDEm\n1hgT/8nHwBVA2dmGleDxhw8PERcZxk0leU5HGXXXzcohOTaCZzfX0Deou578QWv3AA+9d4BNh9u5\naFI637hgHHG6fktGIMzlYkpWArsbuhj2avcJOTenLV3WWg/wILAW2AM8Z60tN8bcb4y5H8AYk2WM\nqQX+Cvi+MabWGJMAZAIfGGN2AJuA16y1a8bqzUhgaO7q57VdDdw4L4/4INw8OCrczS0l+XT1D7Fy\nex1W2wQ5akdNB798t5LOviG+vriQJcVZut5Ozsj0nAT6hoY5rNFrOUcj+lXPWrsaWH3Scw+d8HEj\nx6YdT9YFzDqXgBJ8nthYjcdrufv8IqejjJn8lBgum5rJG7ubmJwZx7zCFKcjhZyhYS+v7Wxg0+F2\nClNiuHVBAYnRwVfyZexNyogn3G0or9eSMHJuNL4uPjXo8fLUxiouPS/D7ze2PlcXTU5nf3MPr+5o\noDAllrT4SKcjhYzW7gGe3lxNQ2c/F09O57KpmRrdkrMWEeZicmY8u+u78HptUF2HKr6l+1/Fp97a\n00RrzyB3hMCedi5juLkkH7fL8ExpNR6vtgnyhR21n55OvHK6phPl3E3PSaCr38O2mg6no0gAU+kS\nn3q2tIashCgumhwad6gmRodzw9xc6jv6ebO8yek4Qa1vcJjnS2t4dnMN2QlRPHjJRM7LSnA6lgSJ\n8zITcBvD2vJGp6NIAFPpEp+p7+jjvX0t3FSSF1IjD9NyElkwLoX1la3s13YiY6KyuYdfvL2fHbUd\nXDolg3u+NJ6kmAinY0kQiY5wMyEjljVljbo5Rs6aSpf4zAtbarEWbi7JP/3BQeaq4mwy4iN5fkst\nPQMep+MEjaFhL6t21vP7Dw8R7jbcd9EEXb8lY2Z6diLV7b3sadAvT3J2VLrEJ7xey3OlNVwwMZX8\nlBin4/hcRJiLW+bn0z80zB+31Oo35VFQe6SXX75dyUcH2lg8PpUHL5kUkn+3xHem5iRgDKzRFKOc\nJZUu8YmPDrRRe6SPW+YXOB3FMdmJ0SwpzqKiqZsPKludjhOwhr2Wt/Y28dB7BxjwDPONC4q4dlYO\nEWH6diZjKy4yjPlFKawtU+mSs6PvUuITz2yuJikmnCumZTodxVGLx6dSnJPAmrJGKho1RXGmGrv6\n+c37B3hrTzMz85L4y69MZlJGvNOxJIQsmX7sF6eDLdqLUc6cSpeMuSNHB3mjvInls3OJCnc7HcdR\nxhhunJdPVmIUz2yuprm73+lIAWFo2Msbuxv55dv7aT86yG0LCri5JJ/oiND++yS+d2VxFgBrdTey\nnAWVLhlzL22rY3DYyy3zQ+8C+lOJCHNx56JCwtwuHv+4it5BXVj/RQ629PCLt/bzbkULs/KS+O5l\nk5mRm+h0LAlRuUnRzMxL1HVdclZUumRMWXvsAvpZ+UlMzdaaSZ9IiongjoUFdPQO8cymGm2kewq9\ngx7+uLWWRz44hAW+ecE4birJJ1YbVYvDrpyexY6aDuo7+pyOIgFGpUvGVHl9F3sbu7lp3qm25gxt\nhamxLJ+TQ2VLDy9rY+w/sdayo7aDn63bz7bqI1w0KZ2/uHQSEzPinI4mAsCS41OMb2i0S86QfmWU\nMbVyWx3hbsM1M7OdjuKX5hWm0H50kHcqWogOd/O1hQUYE7prTLX2DLBqZz37mnrIS47mmxcUkZ0Y\n7XQskU+ZkB7HpIw41pQ3cvcF45yOIwFEpUvGzLDX8vKOei45L0Org3+By6Zm0jc0zPrKVn797gEe\nuGSi05F8rn9omHcqmvmosg2323D1jGwWT0jFFcIFVPzbkuIsfvVOJW09A6TGaTN7GRmVLhkzH1a2\n0tI9wPVzc52O4teMMVwzM4f+IS//sraChOhw7gyBDcEBvNayteoIa3c30TvgYW5BMpdPzyQhKtzp\naCJf6MqF5JFxAAAgAElEQVTpWfzn25Ws29MU0usPyplR6ZIxs3JbHQlRYVwyJcPpKH7PZQw3zM0j\nLS6Cf3i5jEi3i5uD/G7PQ61HeW1nPfWd/RSkxPD1xYXkJWtFeQkM03MSyEuOZk1Zo0qXjJgupJcx\n0TvoYU15I1fPzCEyTGspjYTbZfjl1+Zy4cQ0/ucfd/LQeweC8uL6uo4+HnxqK79df5Cjg8PcMj+f\n+y4ar8IlAcUYw5LpWXxQ2UpX/5DTcSRAqHTJmHijvInewWG+OkdTi2ciKtzN774+n2tn5fDT1/fy\nk9V78AbJchJHjg7yk9V7uPRf32XdniYunZLBdy+bzKy8pJC+eUAC15LiLIaGLe/sbXY6igQITS/K\nmHhxWx25SdGUFCY7HSXgRIS5+Pkts0mJCee36w/R1jPIP984k3B3YP6O1DPg4XfrD/Hb9QfpHfSw\nfE4uf33FebxX0eJ0NJFzMrcgmfT4SNaWN7Jstn7BlNNT6ZJR19zdzwf7W/j2lyficmkE42y4XIb/\nfd100uIi+bc391Hd3ssvbptDTlLgLJ/Q3T/E4xuqeGT9IdqPDrJkehZ/fcVkJmVqr0QJDi6X4Ypp\nmby0rY7+oeGQ3+ZMTi8wf3UWv/bK9nq8FpZravGcGGP4869M4he3zWFPQxdX/WI9b+3x//3eOnoH\n+dmb+7jgp2/zf9dUMCM3kZcfuICH7pynwiVBZ0lxFr2Dw6zf3+p0FAkAGumSUbdyex0z8xK1gvgo\nuW5WDjNyE3ngya18679LuefCcfzNkvP87gaFw61HefSjwzxfWsPRwWGumJbJn186iRl52idRgtei\n8akkRIWxpqyRy6dlOh1H/JxKl4yqgy09lNV18f2rpzodJaiMS4vlxW+fz09W7+GRDw6xbk8Tf3/1\nNC6bmuHoRejWWj4+2MbvPzjMW3ubCHMdW3NsxUXjtdemhIRwt4vLpmby1t4mhoa9AXvtpfiGSpeM\nqlU7GzAGrpmZ43SUoBMV7uaHy4r5ytRMfvhqOfc+VsqFE9P4/jVTmZLl24JT39HHi1treX5LLVVt\nvaTERvDnl0zkjkWFZCRE+TSLiNOuLM7ixW11bDrUzgUT05yOI35MpUtG1as76plflEJWon7wjpWL\nJ6ez5jsX8dTGan62bh9X/Xw9V07P4vaFhZw/IXXMbl5o7u5n3e5mXi9r4IPKVqyFxeNT+cuvTOKq\nGdm6iFhC1kWT0okOd7OmrFGlS76QSpeMmorGbvY39/CjZdOdjhL0wt0uvn5+Ectm5/Bf7x3guc01\nvF7WSFFqDLctKOCK6VkUpcac09TjgGeYsrpONh5qZ93uJrbVdGAtFKTE8OeXTOTGefkUpGpBU5Ho\nCDcXT05nbXkj/3jddN21LZ9LpUtGzas76nEZWFKc7XSUkJEUE8H/WjqV7142mTVljTy1sZp/en0v\n//T6XjITIlk0PpWF41IZlxZLVmIUmQmRxER8+sveM+ylobOf6vZeqtp6Odx2lG3VR9hR28mgxwtA\ncW4C371sMldMz+S8zHgtZipykiXFWawpb2R7bQdzC7Q+oZyaSpeMCmstq3bWc/6ENNLjI52OE3Ki\nwt0sn5PL8jm5HG49yocHWtl4sJ2PD7Tx8vb6Tx0bHxmGMTA0bBka9uI5acX7CLeLaTkJ3LWokJKi\nFOYVJuv/qchpXDIlg3C3YW1Zo0qXfC6VLhkV5fVdHG7r5f6LJzgdJeQVpcVSlBbL7QsLsdZS095H\n7ZFeGrv6aezqp7lrADi28n242xDudpGdGEV+SgyFqbFkJUTh1vSIyBlJjA7n/AlprClv5HtLp2g0\nWE5JpUtGxas76glzGZYUZzkdRU5gjKEgNUbXXon4wJXTs/i7l3axt7FbS6bIKWlBETlnx6YWG/jS\npDSSYiKcjiMi4ojLp2ViDKwtb3Q6ivgplS45Z1urO6jr6NPaXCIS0tLjI5lfmMKaMpUuOTWVLjln\nq3bWExHm4vLp2gJDRELblcVZ7G3spqrtqNNRxA+pdMk5GfZaXtvZwJcnp5MQFe50HBERR11xfP9F\nTTHKqah0yTnZfLid5u4BrpmlqUURkfyUGIpzEzTFKKek0iXnZNXOeqLD3Vw2NcPpKCIifmHJ9Cy2\nVnfQ1NXvdBTxMypdctY8w15e39XIpVMzPrPKuYhIqPpk6Zw3NMUoJ1HpkrP28cE22o4Ocu1Mbfsj\nIvKJiRnxjE+PZW15k9NRxM9oeELO2qodDcRFhvHl8zS1OFqe2ljtdAQRGQVLpmfxm/cP0tE7qPUL\n5U800iVnZdDj5fWyBi6flklUuNvpOCIifmVJcRbDXsu6Pc1ORxE/otIlZ+WDyha6+j1co6lFEZHP\nmJGbSE5ilO5ilE9R6ZKz8uqOBhKiwvjSpHSno4iI+B1jDFdMz2L9/haODnicjiN+QqVLzlj/0DBv\n7m5iSXEWEWH6KyQicipLi7MY8Hh5p0JTjHKMfmLKGXu3ooWeAY/2WhQR+QIlRSmkxUWyeleD01HE\nT6h0yRl7dWc9KbERnD8h1ekoIiJ+y+0yLC3O4p29LfQOaopRRli6jDFLjDEVxphKY8z3TvH6FGPM\nx8aYAWPM/ziTcyWw9A56eHtPM0uLswhzq7OLiHyRpTOy6Bsa5r2KFqejiB847U9NY4wb+BWwFJgG\n3GaMmXbSYe3AXwD/ehbnSgBZt6eZvqFhrtVeiyIip7WgKIXU2Ahe0xSjMLKRrgVApbX2oLV2EHgG\nWHbiAdbaZmvtZmDoTM+VwLJqRz0Z8ZHML0pxOoqIiN8Lc7u4sjiLt/c20z807HQccdhISlcuUHPC\n49rjz43EuZwrfqarf4h3K1q4emY2bpdxOo6ISEC4qjib3sFh3tUUY8jzm4tyjDErjDGlxpjSlhb9\nxfRHb5Y3MTjs1V2LIiJnYNH4FJJjwnm9TFOMoW4kpasOyD/hcd7x50ZixOdaax+21pZYa0vS07Xg\npj9atbOe3KRo5hYkOR1FRCRghLldXDk9i7f2aIox1I2kdG0GJhljxhljIoBbgVdG+Oefy7niR44c\nHWT9/laumZmNMZpaFBE5E0tnZNMz4GH9/lano4iDTlu6rLUe4EFgLbAHeM5aW26Mud8Ycz+AMSbL\nGFML/BXwfWNMrTEm4fPOHas3I2NnbXkjHq/VXYsiImfh/AmpJEaH87ruYgxpYSM5yFq7Glh90nMP\nnfBxI8emDkd0rgSeV3fWU5Qaw/ScBKejiIgEnHC3iyumZbKmrJEBzzCRYW6nI4kD/OZCevFfLd0D\nfHygjWtn5WhqUUTkLF01M5vuAQ/r92mKMVSpdMlpvV7WgNeiuxZFRM7BhRPTSIoJ59Wd9U5HEYeo\ndMlprdrRwOTMOM7Linc6iohIwAp3u1hanM2bu5voG9RdjKFIpUu+UENnH5sOt2uUS0RkFFw789hC\nqW/vbXY6ijhApUu+0Gs7j91pc83MbIeTiIgEvoXjU0mLi2SVphhDkkqXfKFXdzYwPSeB8elxTkcR\nEQl4bpfhmpnZvL23me7+k7crlmCn0iWfq6a9lx01HVqbS0RkFF07K5sBj5d1e5qcjiI+ptIln2vV\n8anFq2doalFEZLTMyU8mJzGKVTu0UGqoUemSz/Xqjnpm5yeRnxLjdBQRkaDhchmumZXD+/tb6Ogd\ndDqO+JBKl5zSgZYedjd0aWpRRGQMXDszh6Fhy9ryRqejiA+pdMkprdrRgDGaWhQRGQvFuQkUpsb8\n6TIOCQ0qXfIZ1lpe3VnP/KIUshKjnI4jIhJ0jDFcOzOHDytbaekecDqO+IhKl3xGRVM3lc09XKu1\nuURExsyy2Tl47bHrZyU0qHTJZ6za0YDLwFJNLYqIjJlJmfEU5ybw0rY6p6OIj6h0yad8MrV4/oQ0\n0uIinY4jIhLUls/OZVddJ5XN3U5HER9Q6ZJP2V7TQVVbL9fprkURkTF33ewcXAaNdoUIlS75lJXb\n6ogMc7FkRpbTUUREgl5GfBQXTkpn5bZ6vF7rdBwZYypd8idDw15e3dnAZdMySYgKdzqOiEhIuH5O\nLnUdfWw+3O50FBljKl3yJ+/va6H96CDXz8l1OoqISMi4YnomMRFuVm7XFGOwU+mSP3lpWx3JMeFc\nNDnd6SgiIiEjJiKMJdOzWLWzgf6hYafjyBhS6RIAuvuHeHN3E9fOyiHcrb8WIiK+tHxOLt39Ht7Z\n2+x0FBlD+ukqAKwpa2TA42W5phZFRHzugolppMdH8qLuYgxqKl0CwMrtdRSmxjAnP8npKCIiIcft\nMiyblcO7Fc20Hx10Oo6MEZUuobGzn48OtLF8di7GGKfjiIiEpBtL8hgatqzUaFfQUukSXtlRh7Vo\nalFExEFTshKYlZfIc6U1WKs1u4KRSleIs9by4tY65hQkMS4t1uk4IiIh7aaSfPY2drOzttPpKDIG\nVLpCXHl9F3sbu7U2l4iIH7hudg5R4S6eLa1xOoqMAZWuEPd8aQ0RYS6um6XSJSLitISocK4qzubV\n7fX0DWrNrmCj0hXC+oeGWbm9niXTs0iM0bY/IiL+4KaSfLoHPLxe1uB0FBllKl0h7M3dTXT2DXFz\nSb7TUURE5LhF41MoTI3h2c2aYgw2Kl0h7PktteQmRXP+hFSno4iIyHHGGG4uyWfjoXYOtx51Oo6M\nIpWuEFXf0cf6/S3cMC8Pl0trc4mI+JMb5ubhMvD8Fo12BROVrhD1xy21WAs3zctzOoqIiJwkKzGK\niyen88KWWjzDXqfjyChR6QpBXq/l+S21LB6fSn5KjNNxRETkFG6ZX0BT1wBvaRPsoKHSFYI2HW6n\nur2Xm+drlEtExF9dNjWD7MQoHv+4yukoMkpUukLQc6U1xEeGsWR6ttNRRETkc4S5XXxtQQEfVLZy\noKXH6TgyClS6Qkxn3xCrdzVwzawcoiPcTscREZEvcMuCfMLdhic2aLQrGKh0hZg/bqmlf8jL7QsL\nnI4iIiKnkREfxZLibF7YUkvvoMfpOHKOVLpCiLWWJzZWMacgieLcRKfjiIjICNy1uJDufg8vb693\nOoqcI5WuEPLxgTYOthzljoWFTkcREZERKilMZkpWPI99XIW11uk4cg5UukLIExurSIoJ5+qZuoBe\nRCRQGGO4c3Ehexq62Fp9xOk4cg5UukJEU1c/b5Q3cXNJPlHhuoBeRCSQLJ+dS3xkGI9p+YiAptIV\nIp7ZVIPHa/naAl1ALyISaGIjw7hhXh6rdzXQ3NXvdBw5SypdIcAz7OXpTdV8aVIaRWmxTscREZGz\ncPf5RXi8lkc/Oux0FDlLKl0hYN2eZhq7+rlzkS6gFxEJVEVpsVw5LYsnNlTRM6DlIwLRiEqXMWaJ\nMabCGFNpjPneKV43xphfHH99pzFm7gmvHTbG7DLGbDfGlI5meBmZJzdWkZ0YxaVTMpyOIiIi52DF\nxePp6vfw3OYap6PIWTht6TLGuIFfAUuBacBtxphpJx22FJh0/J8VwH+d9Pol1trZ1tqSc48sZ6Ki\nsZv1+1u5fWEBYW4NbIqIBLK5BcnML0rmdx8cwjPsdTqOnKGR/BReAFRaaw9aaweBZ4BlJx2zDHjM\nHrMBSDLGaF0CP/DI+oNEhbu4XWtziYgEhXu/NJ66jj5e29XgdBQ5QyMpXbnAieOYtcefG+kxFlhn\njNlijFlxtkHlzDV39bNyex03l+STHBvhdBwRERkFl03NZHx6LA+/f1CLpQYYX8w3XWitnc2xKcgH\njDEXneogY8wKY0ypMaa0paXFB7GC36MfHcbjtXzrwnFORxERkVHichnu/dJ4yuu7+PhAm9Nx5AyM\npHTVAfknPM47/tyIjrHWfvLvZuAljk1Xfoa19mFrbYm1tiQ9PX1k6eVzHR3w8OTGapZMz6IwVctE\niIgEk6/OySUtLoLfvH/Q6ShyBkZSujYDk4wx44wxEcCtwCsnHfMKcNfxuxgXAZ3W2gZjTKwxJh7A\nGBMLXAGUjWJ++RzPl9bQ2TfEPV8a73QUEREZZVHhbu4+v4j39rVQVtfpdBwZodOWLmutB3gQWAvs\nAZ6z1pYbY+43xtx//LDVwEGgEvgt8O3jz2cCHxhjdgCbgNestWtG+T3ISTzDXn734SHmFSYzrzDZ\n6TgiIjIG7jq/iISoMP5j3T6no8gIhY3kIGvtao4VqxOfe+iEjy3wwCnOOwjMOseMcobWljdR097H\n31918soeIiISLBKiwrn3S+P5tzf3sbO2g5l5SU5HktPQwk1BxlrLw+sPUpgaw+XTMp2OIyIiY+ju\nC4pIignnP9btdzqKjIBKV5B5b18LO2o6WHHReNwu43QcEREZQ/HHR7ve3tvMtuojTseR01DpCiLW\nWn62bj+5SdHcNC//9CeIiEjA+/r5RSRrtCsgqHQFkXcrjo1yPXjpRCLC9L9WRCQUxEWGcd/FE3hv\nXwtbqjTa5c/0kzlIHBvl2kdecjQ3zstzOo6IiPjQXYsLSY2N0J2Mfk6lK0i8vbeZnbWd/PmlEwnX\nxtYiIiElJiKM+y+ewPr9rXxY2ep0HPkc+ukcBKy1/Me6/RSkxHD9XI1yiYiEojsXF5KXHM2PVu1m\n2Ks9Gf2RSlcQWLenmV11nTyoUS4RkZAVFe7mfy2dyt7Gbp4rrXE6jpyCfkIHOK/X8rM391GYGsP1\nc3KdjiMiIg66akYW84uS+bc3KujuH3I6jpxEpSvA/XFrLbsbuviryycTplEuEZGQZozh+1dPo7Vn\nkF+9c8DpOHIS/ZQOYEcHPPzftRXMKUjiulk5TscRERE/MCs/ievn5PL7Dw5R097rdBw5gUpXAPuv\ndw/Q0j3AD66ZhjFafV5ERI75myXn4XLBT1/f63QUOYFKV4CqPdLLw+sPsnx2DnMLkp2OIyIifiQ7\nMZr7L57Aa7saeH9fi9Nx5DiVrgD109f34jLwP5dMcTqKiIj4ofsvnsD49Fj+7qVdHB3wOB1HUOkK\nSKWH21m1s4H7LppATlK003FERMQPRYW7+en1M6k90se/v6mV6v2BSleA8Qx7+cdXd5OVEMV9F493\nOo6IiPixBeNSuGNRAX/48BDbazqcjhPyVLoCzO8+OMSuuk7+/uqpxESEOR1HRET83N8umUJGfBR/\n+8JOBj1ep+OENJWuAHKgpYd/e3MfV0zL5JqZ2U7HERGRABAfFc6PlxdT0dTNb97T2l1OUukKEF6v\n5W9f2ElUmIsfLy/WEhEiIjJilx3/Zf0/366krK7T6TghS6UrQDz28WFKq47wD9dOJyMhyuk4IiIS\nYH64rJiU2AgefGorPbqb0REqXQGgpr2Xf15TwcWT07lhrvZXFBGRM5cSG8EvbptDdXsvf//SLqy1\nTkcKOSpdfm7Ya/mfL+zE7TL85PoZmlYUEZGztmBcCt+9bDIvb6/n+dJap+OEHJUuP/fzt/bz8cE2\n/uGaaeRqTS4RETlH375kIhdMTOUfXiljX1O303FCikqXH3tvXwv/+fZ+bpyXx00leU7HERGRIOB2\nGX52y2ziIsN44Eld3+VLKl1+qr6jj+88s43zMuP50TLdrSgiIqMnIz6Kn986h4OtR3ngya14hrV+\nly+odPmhQY+XB57aytCw5de3zyU6wu10JBERCTIXTEzjx8uLeW9fC//fK+W6sN4HtKS5H/rJ6j1s\nq+7g17fPZXx6nNNxREQkSN22oIDDbUf5zXsHKUqN5d6LtL3cWFLp8jO/ff8gj350mG9dOI6rZmjV\neRERGVt/e+UUatp7+cnre8hPiWZJsX72jBVNL/qRl7bV8n9W7+HqGdn83VVTnY4jIiIhwOUy/PvN\ns5mVl8RfPrOd9/e1OB0paKl0+Yl3K5r5m+d3cv6EVP79llm4XbpwXkREfCMq3M3v757PuLRY7nms\nlHcrmp2OFJRUuvzA9poOvv3kViZnxvObO+cRGaYL50VExLdSYiN4+t5FTEyPY8VjW3hnr4rXaFPp\nctiWqna+/vtNpMVF8ug35xMfFe50JBERCVHJsRE8de9CzsuKZ8Xjpazb3eR0pKCi0uWgd/Y2c/sj\nG0mJjeDJexaSEa+NrEVExFlJMRE88a2FTMtO4P4ntvD4hiqnIwUNlS6HrNxWx72PlTIxI47n719M\nfkqM05FEREQASIwJ54l7FvKlSWn8YGUZP1hZxpAWUD1nKl0+Zq3lkfUH+c6z25lflMLT9y4iLS7S\n6VgiIiKfEh8VziNfn8+Ki8bz+IYq7vrdJo4cHXQ6VkBT6fKhrv4hHnxqGz9+bQ9Li7P4wzd0DZeI\niPgvt8vwd1dN5V9vmsWWqiNc96sP2FLV7nSsgKXS5SNldZ1c+58fsKa8ke8tncKvvjaXqHDdpSgi\nIv7vxnl5PL1iEdbCTQ99zE9f38uAZ9jpWAFHpWuMDXstj354iOt//REDQ16eWbGI+y+egEvrcImI\nSACZV5jMmu9cxM0l+Tz03gGW/fJDyus7nY4VUFS6xtCu2k6u//WH/O9Xd7N4Qiqv/cWFzC9KcTqW\niIjIWYmLDOOnN8zk93eX0HZ0kOt++SE/WFlGW8+A09ECgvZeHAOdfUP82xsVPL6hitTYSP7jltks\nm52DMRrdEhGRwHfplEze+E4yP1u3jyc3VrNyWx0PXDqRu88v0qUzX0ClaxR19g7x6EeH+f2Hh+ju\nH+Lri4v47uWTSYzWxfIiIhJckmMj+OGyYu5aXMg/rd7LT1/fy2MfHeabF47j1gUFxEWqYpxM/0VG\nQWvPAL//4BCPfVxFz4CHy6Zm8t3LJzE9J9HpaCIiImNqYkY8v7t7Ph9WtvLzt/bz49f28PN1+7lt\nYQF3n19ETlK00xH9hkrXWfIMe3m3ooUXttTy1t4mPF7L1TOyeeCSiUzNTnA6noiIiE9dMDGNCyam\nsaOmg9+uP8jvPjjEI+sPcsHENJbNzmVJcVbIj34Za63TGT6jpKTElpaWOh3jM/qHhtl0qJ13Kpp5\ndUcDrT0DpMVFsHx2LrctLGBCepzTEYPWUxurnY4gIsLXFhY4HSFg1LT38nxpDSu311Pd3ktUuIuv\nTMnk4vPSuXhyOpkJwbP1nTFmi7W25HTHhXblPI1Bj5fdDV1srz7CB5WtfFjZRt/QMBFhLr48OZ2b\nSvL58nnphLt1E6iIiMiJ8lNi+KsrzuO7l09ma3UHK7fVsaa8kdd2NQAwJSueCyemMacgmVn5ieQm\nRQf9DWcjKl3GmCXAzwE38Ii19qcnvW6Ov34V0Avcba3dOpJz/YHXa6nv7ONgy1EOtvRwsPUou+o6\nKa/vYtBzbK+pvORobpyXxyVT0lk8Po3oCN2dISIicjrGGOYVJjOvMJkfLpvO3sZu3tvXwvv7Wnhs\nQxWPfHAIgLS4SGbkJjAxI44J6XGMT4+jKC2GtNjIoFnb8rSlyxjjBn4FXA7UApuNMa9Ya3efcNhS\nYNLxfxYC/wUsHOG5Pvfvb+6jorGLpq4Bmrv6ae4ewOP9f9Os8VFhTM1K4O7zi5idn8Ts/CSyE6OC\nvoGLiIiMJWMMU7MTmJqdwP0XT2DQ46WisZvtNUfYXtNJeX0nHx1oY8Dz/zbXDncbMuKjyEqMIj0u\nksTocBJjwkmICiM2MoyIMBfhbhcRbhcul8HrtXi8lmGvF4Ph5vn5Dr7jTxvJSNcCoNJaexDAGPMM\nsAw4sTgtAx6zxy4Q22CMSTLGZANFIzjX57bXdNDY2UdmQhQT0tPITIgkNzmaCenH2nVaXIQKloiI\nyBiLCHMxIy+RGXmJ3Ln42HNer6Wuo48DLT1UtfXS2NVPU2c/DZ39VLb00NU3RFf/EP1D3i/+w4Go\ncFfAla5coOaEx7UcG8063TG5IzzX5x775gKnI4iIiMgpuFyG/JQY8lNivvC4Ac8wRweG8Qx7GRz2\nMjR8bHTL7XIR5jK4XYYwP5uW9JsL6Y0xK4AVxx/2GGMqnMwjjkoDWp0O4SOh9F4htN6v3msQut3p\nAOKvCkdy0EhKVx1w4thc3vHnRnJM+AjOBcBa+zDw8AjySJAzxpSO5NbbYBBK7xVC6/3qvYrIyUay\n1sFmYJIxZpwxJgK4FXjlpGNeAe4yxywCOq21DSM8V0RERCTonXaky1rrMcY8CKzl2LIPv7fWlhtj\n7j/++kPAao4tF1HJsSUjvvFF547JOxERERHxYyO6pstau5pjxerE5x464WMLPDDSc0VOI5SmmUPp\nvUJovV+9VxH5FL/cBkhEREQk2Gj/GhEREREfUOkSv2GMWWKMqTDGVBpjvud0nrFkjPm9MabZGFPm\ndJaxZozJN8a8Y4zZbYwpN8b8pdOZxooxJsoYs8kYs+P4e/1HpzONNWOM2xizzRizyuksIv5OpUv8\nwglbRi0FpgG3GWOmOZtqTD0KLHE6hI94gL+21k4DFgEPBPH/2wHgUmvtLGA2sOT4Hd3B7C+BPU6H\nEAkEKl3iL/603ZS1dhD4ZMuooGStfR9odzqHL1hrG6y1W49/3M2xH9C5zqYaG/aYnuMPw4//E7QX\nzhpj8oCrgUecziISCFS6xF983lZSEkSMMUXAHPj/27vXEKuqMIzj/yeTMjUjSBCMpkIrFDPKqCSz\ni92Lgkgo7UOFFZUYRhQFfYsikjKRooKiTIqUgu5RSWGpk6ZFaHT9IF0msntaNj192GtiMpsZcc4+\n4+n5wYHN2nud9e4ZZnjPu9dZi5XNjaRxyuO2tUAH8Irtlr1X4G7gBqD3TfAiIklXRNRD0jBgCTDH\n9o/NjqdRbHfanki1A8fRksY3O6ZGkHQ20GF7dbNjidhVJOmKgaIv203FLkrSYKqEa5Htpc2Opw62\nvwdep3Xn7k0GzpX0OdV0gJMkPdbckCIGtiRdMVBky6gWJUnAQ8B62/OaHU8jSdpP0j7leAgwDdjQ\n3Kgaw/ZNtkfbbqP6e33N9owmhxUxoCXpigHB9h9A15ZR64EnW3nLKEmLgbeBQyRtlHRZs2NqoMnA\nTKpKyNryOrPZQTXIKOB1Se9RfZB4xXaWUogIICvSR0RERNQila6IiIiIGiTpioiIiKhBkq6IiIiI\nGsqDKe0AAAPESURBVCTpioiIiKhBkq6IiIiIGiTpioiIiKhBkq6I2CmSOsvaWx9IWidprqTdyrmj\nJM3voW+bpIvqi/ZfY28u+yQOCJKmS/pYUtb2imhBSboiYmdttj3R9jiqFdjPAG4FsP2O7dk99G0D\nmpJ0FZ+UfRL7TNKgRgVj+wng8ka9f0Q0V5KuiOg3tjuAWcA1qkztqtpIOqHbivTvShoO3A4cX9qu\nK9WnNyWtKa/jSt+pkpZJekrSBkmLyvZCSJok6a1SZVslabikQZLulNQu6T1JV/QlfklPS1pdqnaz\nurX/LOkuSeuAY/9jzHHleG0Zc0zpO6Nb+/1dSZuk08s9rpP0aj/+GiJigNq92QFERGux/WlJLEZu\nc+p64GrbyyUNA7YANwLX2z4bQNJewDTbW0rSshg4qvQ/AhgHfAEsByZLWgU8AUy33S5pb2AzcBnw\ng+1JkvYAlkt62fZnvYR/qe1NZd/EdklLbH8LDAVW2p5b9gbdsJ0xrwTusb2oXDNI0mHAdGCy7a2S\nFgIXS3oBeACYYvszSfvu8A86InY5Sboioi7LgXmSFgFLbW8sxaruBgMLJE0EOoGx3c6tsr0RoMzD\nagN+AL603Q5g+8dy/lRggqQLSt8RwBigt6RrtqTzy/H+pc+3JZYlpf2Q/xjzbeBmSaPL/X0k6WTg\nSKoEDmAI0AEcA7zRlQTa3tRLXBHRApJ0RUS/knQQVZLSARzW1W77dknPAWdSVZ5O207364CvgcOp\npj9s6Xbut27HnfT8/0vAtbZf2oG4pwKnAMfa/lXSMmDPcnqL7c6e+tt+XNJK4Czg+fJIU8Ajtm/a\nZqxz+hpXRLSOzOmKiH4jaT/gPmCBbW9z7mDb79u+A2gHDgV+AoZ3u2wEVRXpT2Am0Nuk9Q+BUZIm\nlTGGS9odeAm4StLg0j5W0tBe3msE8F1JuA6lqkb1ecySbH5qez7wDDABeBW4QNLIcu2+kg4AVgBT\nJB3Y1d5LbBHRAlLpioidNaQ87hsM/AE8CszbznVzJJ0I/Al8ALxQjjvLBPWHgYXAEkmXAC8Cv/Q0\nsO3fJU0H7i3zsDZTVasepHr8uKZMuP8GOK+X+3gRuFLSeqrEasUOjnkhMFPSVuAr4LYyP+wW4GVV\ny2hspZrXtqJM1F9a2juovvkZES1M23wYjYj4X5DUBjxre3yTQ/mH8pjz7y8XRETryOPFiPi/6gRG\naIAtjkpV7fuu2bFERP9LpSsiIiKiBql0RURERNQgSVdEREREDZJ0RURERNQgSVdEREREDZJ0RURE\nRNTgL7ZGh7aiQlPkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(vipers['vipers_ra'], vipers['vipers_dec'])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: MergeConflictWarning: Cannot merge meta key 'EXTNAME' types and , choosing EXTNAME='/Users/rs548/GitHub/dmu_products/dmu1/dmu1_ml_XMM-LSS/data_tmp/VI...' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-11-01T10:29:26' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'EXTNAME' types and , choosing EXTNAME='/Users/rs548/GitHub/dmu_products/dmu1/dmu1_ml_XMM-LSS/data_tmp/VI...' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-11-01T10:29:26' [astropy.utils.metadata]\n" + ] + } + ], + "source": [ + "# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, vipers, \"vipers_ra\", \"vipers_dec\", radius=0.8*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add VIDEO" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "HELP Warning: There weren't any cross matches. The two surveys probably don't overlap.\n" + ] + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(video['video_ra'], video['video_dec'])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-26T17:48:54' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-26T17:48:54' [astropy.utils.metadata]\n" + ] + } + ], + "source": [ + "# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, video, \"video_ra\", \"video_dec\", radius=0.8*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add VHS" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8XdWd7/3vT0e9V8uyZEuWG+7Glhu9Y0gIkIQaII0Y\nJpDJ5EmelDtPbu48mcxNJneSKYQ4QEhIQkkGCBBqcEIH44Z7r7LVi9W7tO4fOnaEwZaMt7TPOfq8\nX6/z4uxyzv75SEhfrbX2WuacEwAAAE5flN8FAAAARAqCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOAR\nghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACAR6L9unB2drYrKiry6/IAAABDtm7dulrnXM5g\n5/kWrIqKirR27Vq/Lg8AADBkZnZwKOfRFQgAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIV\nAACARwhWAAAAHiFYAQAAeIRgBQAA4JFBg5WZPWhm1Wa25QTHP2Nmm8xss5m9bWZzvS8TAAAg9A2l\nxerXkpad5Ph+Sec752ZL+r6k+zyoCwAAIOwMulagc+51Mys6yfG3B2yuklRw+mUBAACEH6/HWH1R\n0gsevycAAEBYGLTFaqjM7EL1B6tzTnLOcknLJWnChAleXRof0SPvlo7IdW5ezNcaADA6eNJiZWZz\nJD0g6WrnXN2JznPO3eecK3HOleTk5HhxaQAAgJBx2sHKzCZIelLSrc65XadfEgAAQHgatCvQzB6V\ndIGkbDM7LOl7kmIkyTm3QtL/lJQl6V4zk6Qe51zJcBUMAAAQqoZyV+BNgxy/XdLtnlUEAAAQpph5\nHQAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQr\nAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwA\nAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIA\nAPAIwQoAAMAjBCsAAACPEKwAAAA8QrACAADwCMEKAADAIwQrAAAAjxCsAAAAPEKwAgAA8AjBCgAA\nwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsAAACPEKwAAAA8MmiwMrMHzazazLac4LiZ2X+a\n2R4z22Rm870vEwAAIPQNpcXq15KWneT4FZKmBB/LJf389MsCAAAIP4MGK+fc65LqT3LK1ZJ+4/qt\nkpRuZnleFQgAABAuvBhjlS/p0IDtw8F9H2Bmy81srZmtramp8eDSAAAAoWNEB6875+5zzpU450py\ncnJG8tIAAADDzotgVSZp/IDtguA+AACAUcWLYPWMpNuCdwcukdTonKvw4H0BAADCSvRgJ5jZo5Iu\nkJRtZoclfU9SjCQ551ZIel7SlZL2SGqT9PnhKhYAACCUDRqsnHM3DXLcSbrLs4oAAADCFDOvAwAA\neIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADg\nEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBH\nCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4h\nWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRg\nBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOCRIQUrM1tmZjvNbI+ZfftDjqeZ2Z/MbKOZbTWz\nz3tfKgAAQGgbNFiZWUDSzyRdIWmGpJvMbMZxp90laZtzbq6kCyT9m5nFelwrAABASBtKi9UiSXuc\nc/ucc12SHpN09XHnOEkpZmaSkiXVS+rxtFIAAIAQN5RglS/p0IDtw8F9A90jabqkckmbJX3VOdfn\nSYUAAABhwqvB65dL2iBpnKR5ku4xs9TjTzKz5Wa21szW1tTUeHRpAACA0DCUYFUmafyA7YLgvoE+\nL+lJ12+PpP2Szjj+jZxz9znnSpxzJTk5OR+1ZgAAgJA0lGC1RtIUM5sYHJB+o6RnjjunVNLFkmRm\nuZKmSdrnZaEAAAChLnqwE5xzPWZ2t6SXJAUkPeic22pmdwaPr5D0fUm/NrPNkkzSt5xztcNYNwAA\nQMgZNFhJknPueUnPH7dvxYDn5ZIu87Y0AACA8MLM6wAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYA\nAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEA\nAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA\n4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgEYIVAACA\nRwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAAAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAe\nIVgBAAB4hGAFAADgkSEFKzNbZmY7zWyPmX37BOdcYGYbzGyrmb3mbZkAAAChL3qwE8wsIOlnki6V\ndFjSGjN7xjm3bcA56ZLulbTMOVdqZmOGq2AAAIBQNZQWq0WS9jjn9jnnuiQ9Junq4865WdKTzrlS\nSXLOVXtbJgAAQOgbSrDKl3RowPbh4L6BpkrKMLNXzWydmd3mVYEAAADhYtCuwFN4nwWSLpaUIOkd\nM1vlnNs18CQzWy5puSRNmDDBo0sDAACEhqG0WJVJGj9guyC4b6DDkl5yzrU652olvS5p7vFv5Jy7\nzzlX4pwrycnJ+ag1AwAAhKShBKs1kqaY2UQzi5V0o6RnjjvnaUnnmFm0mSVKWixpu7elAgAAhLZB\nuwKdcz1mdreklyQFJD3onNtqZncGj69wzm03sxclbZLUJ+kB59yW4SwcAAAg1AxpjJVz7nlJzx+3\nb8Vx2z+W9GPvSgMAAAgvzLwOAADgEYIVAACARwhWAAAAHiFYAQAAeIRgBQAA4BGCFQAAgEcIVgAA\nAB4hWAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4hGAFAADgkWi/C0Boamzv1mu7atTU3q2W\nzh61dvaozzktm5Wn2flpfpcHAEBIosUKH1Db0qlfvL5Xaw/Uq661UzEBU35GghJiAnp0dan+tKlc\nPX19fpcJAEDIocUK71PR2K5fvXVAfc7pjvMmKT8j4dixnr4+vbilUm/vrdOh+jbdtGiCMhJjfawW\nAIDQQosVjjlY16r739inQJRp+XnF7wtVkhQdFaWPzxmnmxdNUE1zp+756x7VtnT6VC0AAKGHYAVJ\nUnlDux58a7+SYqO1/LxijUmJP+G5s/LTdNeFk+Xk9OT6MvU5N4KVAgAQughWkHNOz2wsV2x0QMvP\nKx5S9152cpyunJWnA3WtWnOgfgSqBAAg9BGsoI2HG1Ra36bLZ+QqJT5myK9bUJihSTlJenFLpRra\nuoaxQgAAwgPBapTr7OnVi1sqlZ+eoPmFGaf0WjPTtWcWqM85PbWhTI4uQQDAKEewGuVe21Wjpo4e\nfXxOnqLMTvn1mUmxumzGWO2qatGGQw3DUCEAAOGDYDWK1bd26c3dtZo3Pl2FWUkf+X2WTsrShMxE\nPbupQm2dPR5WCABAeCFYjWLPb65QlJkunzn2tN4nykxXzxun9u5erdrPQHYAwOhFsBql1hyo17aK\nJl0wLUdpCUMfsH4ieWkJmpabonf21am7l1nZAQCjE8FqlPrVW/uVEBPQWZOyPXvPc6Zkq7WzR++V\nMtYKADA6EaxGocrGDr20tUolhRmKjfbuW6A4O0n56Ql6c08Nk4YCAEYlgtUo9MjqUvU5p8XFWZ6+\nr5npnCnZqm3p0o6KZk/fGwCAcECwGmW6evr06OpSXThtjDKTvF9Aeda4NKUnxuiNPTWevzcAAKGO\nYDXKvLi1UjXNnbp1aeGwvH8gynT2pGwdrGtTaX3bsFwDAIBQRbAaZX77zgEVZiXq/Ck5w3aNkqIM\nxcdE6Y3dtFoBAEYXgtUosq28SWsOHNEtiwsVFXXqs6wPVVx0QIsnZmlbeZPqW1lDEAAwehCsRpHf\nrjqg+JgoXVdSMOzXWjwxU5K0vvTIsF8LAIBQQbAaJRrbu/XUe+W6em6+0hO9H7R+vPTEWE3MSdJ7\npUfU18fUCwCA0YFgNUo8u6lc7d29umXJ8Axa/zDzJ2ToSFu31hxgmRsAwOhAsBolntlQrkk5SZqV\nnzpi15w5LlWxgSg9sf7wiF0TAAA/EaxGgcrGDq0+UK9PzM2X2fANWj9eXHRAs/JT9fzmSrV39Y7Y\ndQEA8AvBahR4dlO5nJOumps34tc+c0KGWjp79OdtlSN+bQAARhrBahT408ZyzcpPVXFO8ohfe2Jw\n/cDH19EdCACIfASrCHewrlUbDzfqE3PH+XL9KDN9cn6+3tpTq8rGDl9qAABgpBCsItyfNpZLkj42\nx59gJUmfnF+gPif98b0y32oAAGAkEKwi3DMby7WwKEP56Qm+1TAxO0kLCjP0xPrDco45rQAAkYtg\nFcF2VjZrV1WLrvKpG3CgT80v0J7qFm0pa/K7FAAAhs2QgpWZLTOznWa2x8y+fZLzFppZj5l92rsS\n8VE9s7FMgSjTlbNH/m7A410xa6wCUabnNlf4XQoAAMNm0GBlZgFJP5N0haQZkm4ysxknOO9Hkv7s\ndZE4dc45/Wljhc6alKXs5Di/y1FGUqzOmpSl5zdX0B0IAIhYQ2mxWiRpj3Nun3OuS9Jjkq7+kPO+\nIukJSdUe1oePaNPhRpXWt4VEN+BRH5udp9L6Nm0tpzsQABCZhhKs8iUdGrB9OLjvGDPLl3StpJ97\nVxpOx5+3VSoQZbpsRq7fpRxz2Uy6AwEAkc2rwev/Lulbzrm+k51kZsvNbK2Zra2pqfHo0vgwK7dV\na1FRptITY/0u5ZhMugMBABFuKMGqTNL4AdsFwX0DlUh6zMwOSPq0pHvN7Jrj38g5d59zrsQ5V5KT\nk/MRS8ZgSuvatLOqWZeEUGvVUVfOztPBOroDAQCRaSjBao2kKWY20cxiJd0o6ZmBJzjnJjrnipxz\nRZIel/Rl59xTnleLIVm5vUqSdMn0MT5X8kGXB7sDn6c7EAAQgQYNVs65Hkl3S3pJ0nZJf3DObTWz\nO83szuEuEKdu5fYqTc1NVmFWkt+lfEBmUqyWFtMdCACITEMaY+Wce945N9U5N8k594PgvhXOuRUf\ncu7nnHOPe10ohqaxrVvv7q/XJdNDrxvwqCtn5+lAXZu2VzT7XQoAAJ5i5vUI8+quavX2uZAcX3XU\n5TNz6Q4EAEQkglWEeXlblbKTYzWvIN3vUk4oKzlOS4oz6Q4EAEQcglUE6erp02s7a3TxGbmKijK/\nyzmpK2fnaV9tq3ZU0h0IAIgcBKsIsnp/vZo7e3RpCHcDHnXZjLEyk17aWul3KQAAeIZgFUFWbq9S\nfEyUzp6c7Xcpg8pJiVNJYYZe3EKwAgBEDoJVhHDO6eVtVTpnco4SYgN+lzMkl88cqx2VzTpY1+p3\nKQAAeIJgFSF2VDarrKFdl84IvUlBT+TymWMl0R0IAIgcBKsIsXJblcyki84I/fFVR43PTNTMcal0\nBwIAIgbBKkKs3F6leePTlZMS53cpp2TZzLFaX9qg6qYOv0sBAOC0EawiQFVThzYebgzp2dZPZNms\nYHfgtiqfKwEA4PQRrCLA0UWXw2GaheNNHpOs4uwkvUR3IAAgAhCsIsDKbVWakJmoKWOS/S7llJmZ\nLp81Vqv21amhrcvvcgAAOC0EqzDX2tmjt/bW6dIZuTIL7dnWT2TZzLHq6XP6y/Zqv0sBAOC0EKzC\n3Bu7a9XV0xeW46uOmlOQpry0eL3ItAsAgDBHsApzK7dXKS0hRiVFGX6X8pGZmS6fOVav76pRW1eP\n3+UAAPCREazCWG+f0193VOvCaTmKCYT3l/LymWPVGVxEGgCAcBXev41HufdKj6i+tUuXhOHdgMdb\nWJShjMQYugMBAGGNYBXGXt5epZiA6bypOX6XctqiA1G6dEau/rq9Wl09fX6XAwDAR0KwCmMvb6vS\nkuIspcbH+F2KJ5bNGqvmzh69vbfW71IAAPhICFZham9Ni/bVtIb13YDHO2tStpJiAyzKDAAIWwSr\nMPWX4GzrF08f43Ml3omPCejCM8boz1ur1Nvn/C4HAIBTRrAKUyu3VWtGXqoKMhL9LsVTy2aNVV1r\nl9YdPOJ3KQAAnDKCVRiqb+3S2oP1EXE34PEumDZGsdFRepG1AwEAYYhgFYZe2VGtPiddGkHjq45K\njovWuZOz9dLWSjlHdyAAILwQrMLQyu1Vyk2N06z8VL9LGRaXzxqrsoZ2bS1v8rsUAABOCcEqzHR0\n9+q1XTW6ZHr4Lro8mEum5yrKRHcgACDsEKzCzKp9dWrr6o3I8VVHZSbFavHELGZhBwCEHYJVmFm5\nvUqJsQEtLc7yu5RhtWzWWO2pbtGe6ma/SwEAYMgIVmHEOaeV26p13pQcxccE/C5nWC2bNVZm0rOb\nKvwuBQCAISNYhZEtZU2qbOqI6G7Ao3JT47WwKFPPbqrg7kAAQNggWIWRl7dXKcqki86InNnWT+aq\nOXnaU92iXVUtfpcCAMCQEKzCyMptVSopzFRmUqzfpYyIZbPyFGXSs5vK/S4FAIAhIViFibKGdm2r\naNIlM0ZHa5Uk5aTEaUlxFt2BAICwQbAKE38OTj1wSQTOtn4yH58zTvtrW5ksFAAQFghWYeKFLZWa\nlpui4pxkv0sZUctmjVUgyrg7EAAQFghWYaCmuVNrDtRr2ayxfpcy4jKTYnX25Gw9t7mc7kAAQMgj\nWIWBl7dVyTnpitmjL1hJ0sfn5OlQfbs2HW70uxQAAE6KYBUGXthSoaKsRE3LTfG7FF9cPmOsYgLG\n3YEAgJAX7XcBOLnGtm69s7dOt59bHLGLLg8mLTFG507J0XObKvSdK6YrKmp0fg4AQs8j75aOyHVu\nXjxhRK6D00eLVYhbub1KPX1OV4zC8VUDXTU3T+WNHVp78IjfpQAAcEIEqxD3wpZKjUuL15yCNL9L\n8dVlM8YqMTagJ9Yd9rsUAABOiGAVwlo6e/T67hpdPmvsqO0GPCopLlpXzs7Tc5sr1N7V63c5AAB8\nKIJVCHt1Z7W6evp0xaw8v0sJCZ+aX6CWzh69FJwsFQCAUDOkYGVmy8xsp5ntMbNvf8jxz5jZJjPb\nbGZvm9lc70sdfV7YUqns5DgtKMzwu5SQsHhipgoyEvQ43YEAgBA1aLAys4Ckn0m6QtIMSTeZ2Yzj\nTtsv6Xzn3GxJ35d0n9eFjjYd3b16ZUe1LpuZqwB3wUmSoqJMn5pfoLf21qq8od3vcgAA+IChtFgt\nkrTHObfPOdcl6TFJVw88wTn3tnPu6O1aqyQVeFvm6PPqzhq1dfWO+rsBj/ep+QVyTvrje2V+lwIA\nwAcMJVjlSzo0YPtwcN+JfFHSC6dTFKSnN5QpOzlOS4uz/C4lpEzIStSiiZl6Yt1hlrgBAIQcTycI\nNbML1R+szjnB8eWSlkvShAlMdnYije3d+sv2at2ypFDRAe4vON6n5xfom09s0vrSBsafAfhQJ5q4\n0zmnvuDfZFGmUX/HNbw3lGBVJmn8gO2C4L73MbM5kh6QdIVzru7D3sg5d5+C469KSkpobjiBFzZX\nqKu3T9ecOc7vUkLSlXPy9L1nturxdYcJVsAo0t3bp+aOHjW2dx97NB33vKmj//nOymZ1dPepvbtX\n7V296u7tU2+f08BfPCYpEGUKRJnioqOUFBfd/4gNKC0hVmNS4pQTfMTHBPz6ZyPMDCVYrZE0xcwm\nqj9Q3Sjp5oEnmNkESU9KutU5t8vzKkeZpzaUqTgnSbPzR/ekoCeSHBetZbPG6tlN5freVTP4gQeE\nka6ePjW0d6mxbUAg6ugObvf8bXtgWAo+bx1kDrvY6CilJcQoNT5a3b1OyXHRyk6OVUJsQLGBKEVF\nmaKsP0g5J/X2ueCjTx09fWrt7FFrZ4/qW7u0paxJvQOGG2QmxWpiVpIm5iRpYnaSMhJjh/ujQpga\nNFg553rM7G5JL0kKSHrQObfVzO4MHl8h6X9KypJ0b7BZtcc5VzJ8ZUeusoZ2rdpXr//n0qk0UZ/E\ndSUF+uN7ZXpmY7muLxk/+AsAnNRHWfOuzzm1dfWquaNbrZ29au3qUVtXr9q6etTWGfxvV+/f9nX1\nqrOn76Tv2d9aFKPU4GN8ZmIwLMUoLSFGaQnRSkscuN1/XlpCzPv+yDrdNfx6+5yOtHapurlTNc0d\nOnSkXdsqmrSutP8+rZzkOM0dn6a5BenKSo47rWshsgxpjJVz7nlJzx+3b8WA57dLut3b0kanZzaU\nS5KumXey+wOwtDhLU3OT9dDbB3TdggJCKOCx7t4+NbR1q6GtSw1t3Wrs6FZzR7eaO3qCj261dPYc\nG690vPiYKCXGRisxNqCkuIByUuKUGBsIPvr3J8QEFB8TUMKA50OZXqa9q0/tXZ2qaur0+F/9N4Eo\nU3ZKnLJT4iSlSuoPklVNHdpf26qt5U1aub1aK7dXqyAjQQsKMzR/QoZiGBc76nk6eB2n7+kNZVpQ\nmKEJWYl+lxLSzEyfPatI//jHLVp78IgWFmX6XRIQVvr6nCqDIWF/bate2lKpI+39QepIW7daO3ve\nd75JSoyLVmp8tFLio5WbGq+U4POU+Bglx0W/LzhF4vx7UWbKS0tQXlqCzpqUrYa2Lm0ua9SGQw16\nekO5Vm6v1lmTsrR4YqYSY/n1OlrxlQ8h2yuatKOyWd+/eqbfpYSFa8/M149e2KFfv32AYAWcQEtn\nj3ZVNWtPdYv217bqQDBIHahrVUf337rloqNM6YkxSk+M1fSx8UpPjFVGcDsjMUYp8TERGZZOR3pi\nrM6dkqNzJmdrf12rXt9Vo5e3Vem1nTVaUpylC6blMAZ0FCJYhZCn3itTdJTpY3O4G3AoEmOjdcPC\n8XrwrQOqbOzQ2LR4v0sCPDfUsUI9vX2qaelUVVOHqpo6VdnYoarmDjW0dR87J8qkzKQ4ZSfHqqQw\nU1nJscpOjlN2cpxS4qMVRZf6R2JmKs5OVnF2sioa2/X6rhq9vrtG60uP6LIZuZpfmMFnO4oQrEJE\nX5/T0xvKdcG0HGUmcbfJUN26pEgPvLlfD797UF+/bJrf5QDDzjmn+tYuVQSDU1VTf5iqa+l83/xM\nOSlxmpCZqIVF8RqbGq+clDhlJMbS6jTM8tISdMPCCTp7cpue21ShJ98r06p9dbpq7jgVZiX5XR5G\nAMEqRLy9t06VTR36x49N97uUsDIhK1EXnzFGj7xbqrsvmqy4aJrdETl6evtU2dih8sZ2VTS0q6yh\nQxWN7cfurDNJGUmxyk2N18xxqRqbGq/c1HhlJccqOopB1H4qyEjU8vOKtamsUS9uqdR9r+/TOVOy\ndcn0XAa4RziCVYh4+N2DykiM0aUzcv0uJex87qyJWrn9XT27sUKfWsAylQhPHd292lHZrC1ljdpa\n3qRt5Y3aUdl8LETFBExjU+M1b3y6xqUlKC89XmNS4hUbzS/pUGVmmluQrjPGpuiFLZV6Y3etdlY2\n67oF45WfkeB3eRgmBKsQUNnYoT9vq9Lt505koONHcPbkLE0ek6yH3jmgT87PZ+oFhLzG9m5tK2/S\n1vJGbStv0pbyRu2taVVvsC8vNT5aM8el6balhWps71ZeWoJyUuIYpxOm4qIDumZevmbkperJ9Yf1\n89f26KIzcnXBtBy+phGIYBUCHltTqj7n9JlFhX6XEpaOTr3w3ae2aNW+ei2dxMLVCB31rf235G8J\nPraWN6m0vu3Y8dzUOM0cl6bLZ47VzHFpmjkuVQUZCcf+QDjdiS4ROqbmpuirF0/V0xvLtHJ7lUrr\nW3V9yXimZogwfDV91t3bp0dXl+q8KTnMXXUarltQoP/6y279dOUuLSleQqsVfNHY3q0tZY3adLhR\nm8satOlwow4faT92vCgrUbPz03TDwvGaOS5VM8elKSeFWbtHk4TYgG4oGa+irCQ9t6lCP3tlj25e\nXKj8dLoGIwXBymd/2V6lqqZO/eAaWqtOR3xMQHddOFnfe2ar3tlbp7MmZ/tdEiJcS2ePtpQ1avPh\nRm0qa9Tmww06UPe3lqjCrETNG5+u25YWanZ+umbmpyo1PsbHihEqzExLirM0Lj1Bj64u1S9e26ur\n543TgkLm44sEBCuf/XbVQeWnJ+jCM8b4XUrYu2HheP381b36ycu7tHRSFq1W8ExHd6+2lgdbooJB\nam9Ni46u0ZufnqDZ+Wm6fuF4zclP16z8VKWzSC8GMSEzUXddOFmPrSnVE+vLVNPcpctm5jLuKswR\nrHy0t6ZFb+2p0/97+TTmlvFAfExAd100Wd99aove3FOrc6fk+F0SwlRFY7vWHTyi9QcbtK70iLaW\nNaonOLA8NzVOs/PTVZSVqPz0ROVnJCg57m8/Skvr2943hgo4meS4aH3+rIn608Zyvb67RnWtnbpu\nwXju9gxjBCsfPbyqVDEB0/Ul4/0uJWJcX1Kgn7+yRz95eZfOmZxNq9UodKqDvXv7nCoa21Va36aD\ndf2hqLG9f7bymICpICNRZ0/O1oTMROWnJyg1ge48eCsQZbp63jhlJ8fqhS2Vur9tn25dWkjXcZgi\nWPmkvatXj687pGWz8hi86qG46IDuvmiK/scfN+u1XTW6YBpdrHi/ju5eHaxr1YG6/iBV1tCm7t7+\n1qi0hBhNyExUYVaiJmQmKi8tgdZkjAgz0zlTcpSVHKfH1pRqxWt79YWzJiqb3w9hh2Dlkz+sPaSm\njh7duoRB61779IIC/eyVPfrpy7t0/tQcWq1GuaNBal9w8eGyI+1y6l/2ZVx6ghYVZWp8Zn+QYlwU\n/DY9L1WYNB0zAAAVyElEQVRfOrdYD719QCte36vPnVWkggzuGA8nBCsfdPb0asVre7WoKFMLizL8\nLifixEZH6asXT9E3n9ikZzaW6+p5+X6XhBHU09un/XWt2lvdon21rSpvaFefkwJmKshM0AXTcjQx\nO1kTMhMZx4KQVJCRqDvOm6QH396vB97cr1sW8wd4OCFY+eDxdYdV0dihH396Lq0pw+RTCwr08OpS\nff/Zbbpg6hilJTJWIZKV1rXp1V3Vem1njV7fXaPuXncsSJ0/lSCF8JOdEqc7z5ukX729Xw+9fUDz\nC9P18Tnj/C4LQ0CwGmFdPX2695W9mj8hXWdPZobw4RKIMv3gmln6xD1v6l9f2qEfXDvb75LgoY7u\nXr27v16v7uwPU/tqWyX1376+oDBDU3NTVJydTJBCWEtNiNHycyfpN6sO6CuPvqcjrV26dWmR32Vh\nEASrEfbH9w6rrKFdP7h2Fq1Vw2xWfpo+f/ZEPfjWfn1qQYHmT6DbNZwdrGvVqztr9OrOar2zr04d\n3X2Ki47SkuIs3bq0MNgylaRHVx/yu1TAMwmxAX3h7Il6Y3eNvvv0VtW2dOkfLpnC748QRrAaQd29\nfbrnlT2aW5Cm86cyx9JI+NqlU/X85gr9jyc369mvnKPoAC0Y4aKju1fv7KvTa8EwdXRW86KsRN24\ncILOn5ajJROzlBDLwuWIbDGBKK24ZYG+/eRm/cdfdquutVP/9IlZ3LEaoghWI+jpDeU6VN+u/3XV\nTP7aGCHJcdH63lUzdefv1ulXbx3Ql84r9rukUWso80vVtnRqV1WzdlU1a19Nq3r6nKKjTMU5Sfr4\nnDxNy01RVnL/7ecVDR3643tlw102EBKiA1H68afnKCs5Vr94bZ/qW7v0k+vnKT6GPyxCDcFqhPT0\n9ulnr+zRzHGpuojla0bU5TNzdcn0Mfrpyl26ePoYFeck+10Sgrp6+rSvtiUYplpU39olScpOjtWi\niZmampuiidlJiqGlEZCZ6TtXTFdOcpz++bntqm9drftuK2Ei0RBDsBohj605pP21rfrFrQtorRph\nZqbvXzNLH/vPN3XHb9fpqbvOVlIc3/p+cM6ptqXrWKvU/tr+VqmYgKk4O1lnT87WtNwUZSYxnxRw\nIrefW6yclDh947836voV7+ihLyxSbmq832UhiN8uI6C2pVP/+uIOLS3O0mUzcv0uZ1TKS0vQPTed\nqVt++a6++cQm3XPTmQTcEdLW1aN39tbp6Q1l2lXVrCNt/cvF5CTHafHETE0dm6KiLFqlgFNx9bx8\nZSXF6Y7frtUn731bD31hkSaPoTU+FBCsRsD/fn6H2rt79f1rRufYqlNdu+2junnxhJMeP2tytr65\n7Az98IUdmleQznirYeKc096aluAdfDVavb9eXb19igmYJuUk69wpOZpKqxRw2s6Zkq3f37FUn/vV\nal234m398nMLufs5BBCshtnq/fV6Yv1hffmCSZo8JsXvcka9O84r1sZDDfrhizs0Kz9NSycxl5gX\nWjt79PbeOr26s1qv7qxRWUO7JGnymGTdtrRQF0wbo301LdyVCXhsVn6anvi7s/TZB1fr5vtX6d7P\nzNdFZ9Az4ieC1TDq7u3Td5/aovz0BN190WS/y4H6x1v9+Lq52nXPm7r7kfX6/R1LaT7/CPr6nLaU\nN+qN3bV6fVeN1pceUXevU1JsQGdNztaXL5yk86fmvG+Ns9L6Nh8rBiJXYVaSHv+7s/T5X63Rl36z\nTv/72tm6fuF4v8satQhWw+jXbx3Qzqpm3XfrAiXG8lGHiuS4aN13W4lu+MUq3XjfO/rd7Yt1xthU\nv8sKeRWN7Xpjd63e2F2rN3fXHBsrNSMvVV88p1jnTclWSVEms50DPshOjtNjy5fozt+t0zef2KSK\nxg79/cWTR+XwE7/x236YHKpv67+9/4wxupQB6yFnUk6yfn/HEt18/yrdeN8q/e6LizUrP83vskJK\ne1ev3t1fFwxTNdpV1SJJykmJ04VnjNF5U3J09uRs5aTE+VwpAElKiovWLz+7UN95crN+unKXdlU3\n6/98ei6T6I4wgtUw6Oju1ZcfXq9AlOl/fWJ0DlgPB5NykvWHO5bq5vvf1c33r9JDX1ikM0fhwM+j\nNxd09/bp0JE27a9p1b7aVh2qbzs2QWdRVpKumDVWk8cka2xqvMxMbV29enlblc/VAxgoNjpK/+e6\nOZqam6wfvrhDB+tadd+tJRqXnuB3aaMGwWoY/NOftmpzWaPuv61E4zMTB38BfFOYlRRsuXpXtzzw\nrv752lm6Zl7+qAjDnT292lDaoL/sqNL+mlaVBoOUScpLi9fiiZmakts/FQLde0D4MDPdcf4kTclN\n1t8/ukGfuOct/eLW+VpQmOl3aaMCwcpjf1h7SI+uPqQvXzCJLsAwUZCRqP++c6m+8sh7+trvN+qv\nO2r0z9fMUlpCZM1mfDRIrdpXr1X76rS+9Ig6e/reF6SKc5JVlJVE1wEQAS46I1d//PJZuv03a3XD\nL1bpm8um6fZzihXFGoPDimDloS1ljfruU1t09uQsff2yaX6Xg1OQmxqvR5cv0YrX9uqnL+/SugP1\n+skN87SkOHynY6hp7tT60iNaX3pE7x1s0MbDDf1ByvoHnN+ypFBLirNUWtdGkAIi1JTcFD1z9zn6\n1uOb9C/P79CqffX6t+vmKoN55IaNOed8uXBJSYlbu3atL9ceDnUtnbrm3rfU0+v07FfOObZQbCgb\nqYk7R8pgE4QO1cZDDfqH32/Q/tpWXTI9V1+9eIpmF4T2wPaunj7trGw+FqTWlx7Rofr+uaRiAqaZ\n49K0oDBDS4qztKgoU2mJf2uNi7TvAyASne7PN+ecfvPOQf3gue3KSo7Vv98wT4vD+A9HP5jZOudc\nyWDn0WLlgeqmDn3mgXdV09ypR760JCxCFU5s7vh0PfuVc3T/G/v04Jv7ddU9Vbr4jDG666LJOnN8\nuu/jr9q7erW9sklbyxq1tbxJW8obtauyRV29fZKkMSlxWlCYoduWFGl+YbpmjktTfAwtUsBoZmb6\n7FlFmj8hQ3c9sl433r9Kn11apG8um8Z0QB6jxeo0VTZ26Ob7V6myqUMPfm5hWHUdRVpLhVctVgM1\ndXTrobcO6IE396uxvVuFWYlaNmusls0cq3nDHLJ+/dYB1bV2qralS3Utnapu7lR5Q7tqmjt19P/a\nhJiA8tMTlJcer3HpCZqQmaj0hBjfwx8Ab3n58621s0f/+uIOPfTOQY3PTNCPPjVHZ03K9uz9I9VQ\nW6wIVqfh8JE23Xz/u6pv7dKvP79QJUXhdccFwWromju69eymCr2wpVJv76lVT59TTkqc5uSnaca4\nVM0cl6qpuSnKSYlTclz0kIJNZ0+vqps6Vd3coeqmTpU1tOtAXav217Zqf02ryhs73nd+WkKM8tL6\nA9S4tASNS49XGiEKGBWG4+fbu/vq9K0nNulAXZuuLynQNy6bpjGp8Z5fJ1LQFTjMtpY3avlv1qm5\no1u/u32x5o1P97skDKOU+BjdtGiCblo0QY1t3frLjiq9vqtG2yqa9MrOavUN+PskNjpK2UmxSk2I\nUSDKFGUmM6nPObV29qq5o0ctnd3q6O77wHVS46NVnJOsJcVZauroUXZyrLKT45SVHKu4aLrzAHhn\ncXGWXvjqefr3lbv04Fv79eymCv3d+ZP0pfOKGT5wGghWp6ivz+mXb+7Xv760QxmJsXrkS0uYsXuU\nSUuM0SfnF+iT8wsk9U8Iu7OyWXtrWlTX0qXa1k7VtXSpoa1bzjk59YeqKDMlZUcrOS5aKfHRSo2P\n1piUeOWkxik3JV5j0+KVkfi3FqhIa1EEEHoSYgP6zpXTddOiCfrhCzv0by/v0qOrS/XVS6bo2jML\nmMPuIyBYnYKqpg5947836o3dtbp0Rq5+9Kk5yuSW1VEvPiaguePTNZdWSwBhqig7SStuXaBV++r0\ng+e261tPbNZPX96t28+dqJsWTVBSHHFhqPikhqCju1cPv1uqe/66W+3dvfqXa2frpkXjGdsyStGS\nBCBSLSnO0jN3n63Xd9fq56/u0T8/t13/9dc9unHheF1XUqDJY1L8LjHkEaxOorOnV4+tPqSfvbJH\n1c2dWlqcpe9fM0uTxyT7XRoAAMPCzHT+1BydPzVH60uP6L7X9umBN/frF6/v07zx6bqupEAfm52n\n9ER6bD4MdwV+iJ2VzXp6Q5meXF+myqYOLSrK1Ncunaqlk8JnKoWhoOUFAMLDcN71PBQ1zZ166r0y\n/fe6Q9pV1aJAlGlBYYYuPmOMLp6eq0k5SRHfi+PpdAtmtkzSf0gKSHrAOffD445b8PiVktokfc45\nt/5k7xlKwaqzp1dbypr0zt5a/WljhXZWNSsQZTp7craWn1ussydnReQ3DMEKAMKD38HqKOecNpc1\n6uVtVVq5vVrbK5okSWNT47WgMEPzCzO0oDBD0/NSIu5OZs+mWzCzgKSfSbpU0mFJa8zsGefctgGn\nXSFpSvCxWNLPg/8NOY1t3dpb26L9Na3aXd2i9QePHFtDTZIWFGbo/796pq6cnadsZlAHAOAYM9Oc\ngnTNKUjX1y+bpvKGdv11R7VW76/XuoNH9NzmCklSIMpUmJWoqWNSNHVsioqyEpWfnqD8jASNTY1X\ndCBy7zYcyhirRZL2OOf2SZKZPSbpakkDg9XVkn7j+pu/VplZupnlOecqPK94iMoa2vXgm/tV29Kp\n2pZO1TT3z1zd0NZ97JzoKNPM/DTdsqRQC4sytKAwUzkphCkAAIZiXHqCbllSqFuWFErqX41kfekR\nba9o0q6qZu2qataft1W+b66/QJQpMylWWUmxygw+UuJjlBgbUEJMQAmxAcXH9D9PDD6PMgXfw6nP\n9U9h0+f6W9D6nNPE7OSQmU9yKMEqX9KhAduH9cHWqA87J1+Sb8GqrbNHj64uVXZynLKTY1WUlaSF\nRZkqykrSxOwkTcxJ0viMROboAADAI2PT4nXl7DxdOTvv2L6O7l6VNbSrvKFdZUfaVRZcmquutUv1\nrV3aWt6k5o4edXT3qq2r530hbKhuWTIhrIKVZ8xsuaTlwc0WM9s5ktfHB2RLqvW7iBDHZzQ4PqPB\n8RmdHJ/PID7jdwEh7gfBxzArHMpJQwlWZZLGD9guCO471XPknLtP0n1DKQzDz8zWDmUg3mjGZzQ4\nPqPB8RmdHJ8PIslQ+sHWSJpiZhPNLFbSjZKeOe6cZyTdZv2WSGr0c3wVAACAHwZtsXLO9ZjZ3ZJe\nUv90Cw8657aa2Z3B4yskPa/+qRb2qH+6hc8PX8kAAAChaUhjrJxzz6s/PA3ct2LAcyfpLm9Lwwig\nW3ZwfEaD4zMaHJ/RyfH5IGL4NvM6AABApGGuAQAAAI8QrEYhM1tmZjvNbI+ZfdvvekKRmT1oZtVm\ntsXvWkKRmY03s1fMbJuZbTWzr/pdU6gxs3gzW21mG4Of0T/5XVOoMrOAmb1nZs/6XQtwughWo8yA\nJYqukDRD0k1mNsPfqkLSryUt87uIENYj6evOuRmSlki6i++jD+iUdJFzbq6keZKWBe+axgd9VdJ2\nv4sAvECwGn2OLVHknOuSdHSJIgzgnHtdUr3fdYQq51zF0YXWnXPN6v+lmO9vVaHF9WsJbsYEHwxq\nPY6ZFUj6mKQH/K4F8ALBavQ50fJDwEdiZkWSzpT0rr+VhJ5gF9cGSdWSXnbO8Rl90L9L+qakPr8L\nAbxAsALwkZlZsqQnJP2Dc67J73pCjXOu1zk3T/2rUSwys1l+1xRKzOzjkqqdc+v8rgXwCsFq9BnS\n8kPAYMwsRv2h6mHn3JN+1xPKnHMNkl4R4/aOd7akT5jZAfUPS7jIzH7nb0nA6SFYjT5DWaIIOCkz\nM0m/lLTdOfcTv+sJRWaWY2bpwecJki6VtMPfqkKLc+47zrkC51yR+n8W/dU5d4vPZQGnhWA1yjjn\neiQdXaJou6Q/OOe2+ltV6DGzRyW9I2mamR02sy/6XVOIOVvSrepvYdgQfFzpd1EhJk/SK2a2Sf1/\n0LzsnGM6ASDCMfM6AACAR2ixAgAA8AjBCgAAwCMEKwAAAI8QrAAAADxCsAIAAPAIwQoAAMAjBCsA\ngzKz3uBcVVvNbKOZfd3MooLHSszsP0/y2iIzu3nkqv3AtduD6/WFBDO7wcz2mBlzWgERiGAFYCja\nnXPznHMz1T+D+BWSvidJzrm1zrm/P8lriyT5EqyC9gbX6xsyMwsMVzHOud9Lun243h+AvwhWAE6J\nc65a0nJJd1u/C462vpjZ+QNmYn/PzFIk/VDSucF9Xwu2Ir1hZuuDj7OCr73AzF41s8fNbIeZPRxc\nOkdmttDM3g62lq02sxQzC5jZj81sjZltMrM7hlK/mT1lZuuCrW/LB+xvMbN/M7ONkpae4Jozg883\nBK85JfjaWwbs/8XRYGZmy4L/xo1m9hcPvwwAQlS03wUACD/OuX3B8DDmuEPfkHSXc+4tM0uW1CHp\n25K+4Zz7uCSZWaKkS51zHcFg8qikkuDrz5Q0U1K5pLcknW1mqyX9XtINzrk1ZpYqqV3SFyU1OucW\nmlmcpLfM7M/Ouf2DlP8F51x9cP2+NWb2hHOuTlKSpHedc18PrqO540Oueaek/3DOPRw8J2Bm0yXd\nIOls51y3md0r6TNm9oKk+yWd55zbb2aZp/xBAwg7BCsAXnpL0k/M7GFJTzrnDgcbnQaKkXSPmc2T\n1Ctp6oBjq51zhyUpOC6qSFKjpArn3BpJcs41BY9fJmmOmX06+No0SVMkDRas/t7Mrg0+Hx98TV2w\nlieC+6ed4JrvSPpHMysI/vt2m9nFkhaoP6RJUoKkaklLJL1+NOg55+oHqQtABCBYAThlZlas/iBS\nLWn60f3OuR+a2XOSrlR/C9LlH/Lyr0mqkjRX/cMROgYc6xzwvFcn/xllkr7inHvpFOq+QNIlkpY6\n59rM7FVJ8cHDHc653pO93jn3iJm9K+ljkp4Pdj+apIecc9857lpXDbUuAJGDMVYATomZ5UhaIeke\nd9wq7mY2yTm32Tn3I0lrJJ0hqVlSyoDT0tTfGtQn6VZJgw0U3ykpz8wWBq+RYmbRkl6S9HdmFhPc\nP9XMkgZ5rzRJR4Kh6gz1tyoN+ZrBQLnPOfefkp6WNEfSXyR92szGBM/NNLNCSasknWdmE4/uH6Q2\nABGAFisAQ5EQ7JqLkdQj6beSfvIh5/2DmV0oqU/SVkkvBJ/3BgeF/1rSvZKeMLPbJL0oqfVkF3bO\ndZnZDZL+Kzguql39rU4PqL+rcH1wkHuNpGsG+Xe8KOlOM9uu/vC06hSveb2kW82sW1KlpH8Jjtf6\n/yT92fqnoOhW/zizVcHB8U8G91er/45KABHMjvuDEwAihpkVSXrWOTfL51LeJ9gleWxAP4DIQVcg\ngEjWKynNQmyCUPW32h3xuxYA3qPFCgAAwCO0WAEAAHiEYAUAAOARghUAAIBHCFYAAAAeIVgBAAB4\n5P8CfqrAIdOetiQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(vhs['vhs_ra'], vhs['vhs_dec'])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-27T11:29:07' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-27T11:29:07' [astropy.utils.metadata]\n" + ] + } + ], + "source": [ + "# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, vhs, \"vhs_ra\", \"vhs_dec\", radius=0.8*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add VIKING" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8leWd9/HPL/u+kQXIAgFCICCyBMQFARVFrdVax6VT\nO53aWtvaaWe693k9szyz1E5nOnWmtta2trWbtlWrtrjgwqKybwoBQghrCFkI2fec6/kjoRMpQpA7\nuc85+b5fr7zMOefOub8ck5Nv7vu6r8ucc4iIiIjIhYvwO4CIiIhIuFCxEhEREfGIipWIiIiIR1Ss\nRERERDyiYiUiIiLiERUrEREREY+oWImIiIh4RMVKRERExCMqViIiIiIeUbESERER8UiUXzvOzMx0\nEydO9Gv3IiIiIkO2ZcuWeudc1rm2861YTZw4kc2bN/u1exEREZEhM7NDQ9lOpwJFREREPKJiJSIi\nIuIRFSsRERERj6hYiYiIiHhExUpERETEIypWIiIiIh5RsRIRERHxiIqViIiIiEdUrEREREQ8omIl\nIiIi4hEVKxERERGPqFiJiIiIeETFSkRERMQjUX4HEH/9asNh3/b9oUsKfNu3iIjIcNARKxERERGP\nqFiJiIiIeETFSkRERMQjKlYiIiIiHlGxEhEREfGIipWIiIiIR1SsRERERDyiYiUiIiLiERUrERER\nEY8MqViZ2XIz22tmFWb21TM8/iUz2z7wsdPM+swsw/u4IiIiIsHrnMXKzCKBh4DrgRLgLjMrGbyN\nc+5bzrnZzrnZwNeA1c65huEILCIiIhKshnLEagFQ4ZyrdM51A48DN59l+7uAX3sRTkRERCSUDKVY\n5QJHBt0+OnDfnzGzBGA58OSFRxMREREJLV4PXr8JeOPdTgOa2b1mttnMNtfV1Xm8axERERF/DaVY\nVQH5g27nDdx3JndyltOAzrlHnHOlzrnSrKysoacUERERCQFDKVabgCIzKzSzGPrL07Onb2RmqcBi\n4BlvI4qIiIiEhqhzbeCc6zWz+4EXgUjgUefcLjO7b+Dxhwc2/QDwknOubdjSioiIiASxcxYrAOfc\nCmDFafc9fNrtnwI/9SqYiIiISKjRzOsiIiIiHlGxEhEREfGIipWIiIiIR1SsRERERDyiYiUiIiLi\nERUrEREREY+oWImIiIh4RMVKRERExCMqViIiIiIeUbESERER8YiKlYiIiIhHVKxEREREPKJiJSIi\nIuIRFSsRERERj6hYiYiIiHhExUpERETEIypWIiIiIh5RsRIRERHxiIqViIiIiEdUrEREREQ8omIl\nIiIi4hEVKxERERGPqFiJiIiIeETFSkRERMQjKlYiIiIiHlGxEhEREfGIipWIiIiIR1SsRERERDyi\nYiUiIiLiERUrEREREY+oWImIiIh4RMVKRERExCMqViIiIiIeGVKxMrPlZrbXzCrM7Kvvss0SM9tu\nZrvMbLW3MUVERESCX9S5NjCzSOAhYBlwFNhkZs8658oGbZMGfA9Y7pw7bGbZwxVYREREJFgN5YjV\nAqDCOVfpnOsGHgduPm2bDwFPOecOAzjnar2NKSIiIhL8hlKscoEjg24fHbhvsKlAupmtMrMtZvYR\nrwKKiIiIhIpzngo8j+eZB1wNxAPrzGy9c6588EZmdi9wL0BBQYFHuxYREREJDkM5YlUF5A+6nTdw\n32BHgRedc23OuXpgDXDx6U/knHvEOVfqnCvNysp6r5lFREREgtJQitUmoMjMCs0sBrgTePa0bZ4B\nrjCzKDNLAC4BdnsbVURERCS4nfNUoHOu18zuB14EIoFHnXO7zOy+gccfds7tNrMXgLeAAPAj59zO\n4QwuIiIiEmyGNMbKObcCWHHafQ+fdvtbwLe8iyYiIiISWjTzuoiIiIhHVKxEREREPKJiJSIiIuIR\nFSsRERERj6hYiYiIiHhExUpERETEIypWIiIiIh5RsRIRERHxiIqViIiIiEdUrEREREQ8omIlIiIi\n4hEVKxERERGPqFiJiIiIeETFSkRERMQjKlYiIiIiHlGxEhEREfGIipWIiIiIR1SsRERERDyiYiUi\nIiLiERUrEREREY+oWImIiIh4RMVKRERExCMqViIiIiIeUbESERER8YiKlYiIiIhHVKxEREREPKJi\nJSIiIuIRFSsRERERj6hYiYiIiHhExUpERETEIypWIiIiIh5RsRIRERHxiIqViIiIiEdUrEREREQ8\nMqRiZWbLzWyvmVWY2VfP8PgSM2sys+0DH3/vfVQRERGR4BZ1rg3MLBJ4CFgGHAU2mdmzzrmy0zZd\n65x73zBkFBEREQkJQzlitQCocM5VOue6gceBm4c3loiIiEjoGUqxygWODLp9dOC+011mZm+Z2fNm\nNsOTdCIiIiIh5JynAodoK1DgnGs1sxuA3wNFp29kZvcC9wIUFBR4tGsRERGR4DCUI1ZVQP6g23kD\n9/2Jc67ZOdc68PkKINrMMk9/IufcI865UudcaVZW1gXEFhEREQk+QylWm4AiMys0sxjgTuDZwRuY\n2Vgzs4HPFww87wmvw4qIiIgEs3OeCnTO9ZrZ/cCLQCTwqHNul5ndN/D4w8BtwKfMrBfoAO50zrlh\nzC0iIiISdIY0xmrg9N6K0+57eNDn3wW+6200ERERkdCimddFREREPKJiJSIiIuIRFSsRERERj6hY\niYiIiHhExUpERETEIypWIiIiIh5RsRIRERHxiIqViIiIiEdUrEREREQ8omIlIiIi4hEVKxERERGP\nqFiJiIiIeETFSkRERMQjKlYiIiIiHlGxEhEREfGIipWIiIiIR1SsRERERDyiYiUiIiLiERUrERER\nEY+oWImIiIh4RMVKRERExCMqViIiIiIeUbESERER8YiKlYiIiIhHVKxEREREPKJiJSIiIuIRFSsR\nERERj6hYiYiIiHhExUpERETEIypWIiIiIh5RsRIRERHxiIqViIiIiEdUrEREREQ8MqRiZWbLzWyv\nmVWY2VfPst18M+s1s9u8iygiIiISGs5ZrMwsEngIuB4oAe4ys5J32e6bwEtehxQREREJBUM5YrUA\nqHDOVTrnuoHHgZvPsN1ngSeBWg/ziYiIiISMoRSrXODIoNtHB+77EzPLBT4AfN+7aCIiIiKhxavB\n698BvuKcC5xtIzO718w2m9nmuro6j3YtIiIiEhyihrBNFZA/6HbewH2DlQKPmxlAJnCDmfU6534/\neCPn3CPAIwClpaXuvYYWERERCUZDKVabgCIzK6S/UN0JfGjwBs65wlOfm9lPgT+cXqpEREREwt05\ni5VzrtfM7gdeBCKBR51zu8zsvoHHHx7mjCIiIiIhYShHrHDOrQBWnHbfGQuVc+6jFx5LREREJPRo\n5nURERERj6hYiYiIiHhExUpERETEIypWIiIiIh5RsRIRERHxiIqViIiIiEdUrEREREQ8omIlIiIi\n4hEVKxERERGPqFiJiIiIeETFSoakty/A8aZOAs75HUVERCRoDWmtQBm9qps62HzoJNsPN9LR08e4\n1DiumZ7DtLHJmJnf8URERIKKipWcUX1rF09sOkJVYweREUbJuBQKMhJYV3mCn68/RG5aPMtKcpia\nk+x3VBERkaChYiV/pqunj1+sP0RrVy/vmzWO2XlpJMT2f6ssnDSG7UdO8uqeWn765kFuL81ndn6a\nz4lFRESCg8ZYyTs453hy61HqWrq4a0EBl03O/FOpAoiMMOZNyOBvl01lwpgEfr+9ivrWLh8Ti4iI\nBA8VK3mHtfvq2XmsmeUzxzI5K+ldt4uKiODO+QVEmvHrjYfp6QuMYEoREZHgpGIlf1JR28qLu45z\nUW4qV0zJPOf2qfHR3DYvj+qmTp7feXwEEoqIiAQ3FSsBoKmjh8c3HSYrOZZb5+YO+Yq/6eNSuHzy\nGNZXnmBnVdMwpxQREQluKlYCwOryWrp6Anz4kgnERkWe19deN3MsuWnxPLXtKM2dPcOUUEREJPip\nWAnNnT1sPniSuRPSyEyOPe+vj4qI4I7SfLp6Ary+r34YEoqIiIQGFSvh9X31BJxj8dTs9/wcmcmx\nzMpLZeOBBtq7ej1MJyIiEjpUrEa5tq5eNhw4way8NDISYy7ouRYXZ9PdF+CN/Sc8SiciIhJaVKxG\nuTf319Pb51g8NeuCn2tsShwl41JYV1lPZ0+fB+lERERCi4rVKNbU0cOb+08wY3wKOSlxnjznkuIs\nOnsCbKjUUSsRERl9VKxGsZ+vO0hXb4Alxe99bNXp8tITKMpO4vWKerp7NWmoiIiMLipWo1R7dy8/\nfv0AxTnJjE+L9/S5lxRn09bdx+ZDDZ4+r4iISLBTsRqlntl+jJPtPSwpvvCxVacrzExk4pgE1u6r\np1dL3YiIyCiiYjVKPb21islZiRRkJAzL8y+emkVTRw+7j7cMy/OLiIgEIxWrUehIQzsbDzZw69y8\nIS9dc76KcpJJiYti66GTw/L8IiIiwUjFahR6elsVALfMyR22fUSYMacgnfKaFpo7tMyNiIiMDipW\no4xzjqe2HmXhpAxyPR60frp5Bek4YPuRxmHdj4iISLBQsRplth1p5OCJdm6dmzfs+8pMjqUgI4Et\nh07inBv2/YmIiPhNxWqUeWrrUWKjIrh+5tgR2d+8CenUtXZx9GTHiOxPRETETypWo0hXbx9/eKua\n62aMJTkuekT2eVFuKtGRxpbDGsQuIiLhb0jFysyWm9leM6sws6+e4fGbzewtM9tuZpvN7Arvo8qF\nem1PHY3tPXxg7vANWj9dXHQkM8an8tbRRno0p5WIiIS5cxYrM4sEHgKuB0qAu8ys5LTNXgEuds7N\nBj4G/MjroHLhnt52lMykWBZNyRzR/c4tSKezJ0BZdfOI7ldERGSkDeWI1QKgwjlX6ZzrBh4Hbh68\ngXOu1f3v6OREQCOVg8zJtm5e3VPLzbPHExU5smeAJ2UlkhYfrTmtREQk7A3lN2wucGTQ7aMD972D\nmX3AzPYAf6T/qJUEkZfKjtPT5/jAMM5d9W5OzWlVUdtKk+a0EhGRMObZoQvn3NPOuWnALcA/n2kb\nM7t3YAzW5rq6Oq92LUOwsqyG3LR4ZoxP8WX/c/LTcMCuY02+7F9ERGQkDKVYVQH5g27nDdx3Rs65\nNcAkM/uzgTzOuUecc6XOudKsLO8X/5Uza+/uZe2+epaV5AzbEjbnkpkcy9iUOHZWqViJiEj4Gkqx\n2gQUmVmhmcUAdwLPDt7AzKbYwG9sM5sLxAInvA4r783affV09QZYVpLja44ZuSkcOtFOc6dOB4qI\nSHg6Z7FyzvUC9wMvAruB3zjndpnZfWZ238BmHwR2mtl2+q8gvMNpqu2gsbKshpS4KBYUZviaY+b4\nVBxQdkxXB4qISHiKGspGzrkVwIrT7nt40OffBL7pbTTxQl/A8eqeWpZOyyZ6hK8GPF1OShxZybHs\nrGpi4aQxvmYREREZDpp5PcxtOXSShrZu308DnjJzfCoH6tto7er1O4qIiIjnVKzC3Mqy40RHGoun\nBsfFAjNzU3Q6UEREwpaKVRhzzrGyrIZLJ2eO2NqA5zI2JY4xiTHs1LQLIiIShlSswlhFbSsHT7QH\nzWlAADNjZm4qlXWtnGzr9juOiIiIp4Y0eF1C00tlNQAsmx48xQr6x1mtLq9jZVkNt8/PP/cXiIgE\ngV9tOOzLfj90SYEv+5X3RkeswtjKshouzktlbGqc31HeYXxaHOkJ0azYWe13FBEREU+pWIWp2uZO\nth9pDKrTgKeYGTPHp/JGRT1N7ZosVEREwoeKVZhatbd/Lcarg+w04CkzclPp6XO8trfW7ygiIiKe\nUbEKU6vL68hJiWXa2GS/o5xRXno8WcmxrBwYByYiIhIOVKzCUF/A8XpFPVcWZfm26PK5RJhxzfQc\nVu2tpau3z+84IiIinlCxCkM7jjbS1NHD4uLgmBT03VxbkkNbdx9v7td63SIiEh5UrMLQ6r11RBhc\nMSXT7yhndenkMSTGROp0oIiIhA0VqzC0Zl8ds/LSSEuI8TvKWcVFR7K4OIuVZTUEAs7vOCIiIhdM\nxSrMNLZ3s+NIY9CsDXguy0pyqGvpYsfRRr+jiIiIXDAVqzDzekU9AQdXhkixuqo4h8gI+9Ms8SIi\nIqFMS9qEmTXldaTGR3NxXqrfUYYkNSGaSwozWFlWw1eWT/M7joiEAL+WlhEZCh2xCiPOOVaX13HF\nlEyiIkPnf+21JTlU1LZSWdfqdxQREZELEjq/feWcymtaqWnu4sqpwX014OmuGVh2R1cHiohIqNOp\nwDCyurx/eZhQGV91Sl56AjPGp/BSWQ2fXDzZ7zgiEsI6e/qob+2isb2Htu5e2rp6ae3qo7cvgJlh\nBgbER0eSnhhDRmIM6QkxpCVEExGkEypLaFGxCiNryuuZmpPEuNR4v6Oct2UlOTz4yj7qWrrISo71\nO46IBLm+gKO2pZNjjR1UNXZQ09xFfUsXLV29f7ZtXHQEMZEROAcB+odNdPb0MXiWl/joSKZkJzE1\nJ4mi7GRS4qNH7h8jYUXFKky0d/ey8UADH7l0gt9R3pNrS8bynZf38cruGu5cUOB3HBEJMk0dPWw9\ndJKNBxtY8VY1x5o66Onrb0YxURHkJMdSlJNMVlIMWcmxpCXEkBQbRUJsJFERfz7qpS/gaOro4WR7\nNw1t3Rw+0U55bQtvVzUBMCEjgUVFmUwbl6IjWXJeVKzCxIbKBrr7AkG/jM27mT4umdy0eFaWqViJ\nCNQ2d7LxYAObDjSw8eBJ9hxvxjmIijDGpcaxYGIGuenxjE+LJzMp9rzLT2SEkTFwKnByFsyfmIFz\njuPNnZQfb2HjwQZ+seEwmUkxLJqSxeyCNKJD6KIg8Y+KVZhYXV5HXHQE8ydm+B3lPTEzrp2Rwy83\nHKatq5fEWH1riowmje3drNt/gtcr6nlz/wkO1LcBkBATydyCdD5/9VTmF6YzJz+dp7dVDUsGM2Nc\najzjUuO5oiiLXceaWLuvnqe3V7GqvJZb5+YxOStpWPYt4UO/vcLEmvI6Fk4aQ1x0pN9R3rNlJTn8\n5I2DrN1Xx/KZ4/yOIyLDqKO7j00HG3hjfz1vVpxg57EmnIPEmEgWThrDX15SwPyJGZSMT/HlSFFk\nhDErL42LclOpqG3lmR3H+PHrB1hQmMH1M8YSG8LvtTK8VKzCwJGGdirr2/jwwtAcX3XKgokZpMZH\n81JZjYqVSAg4n4k6+wKOqsYO9te1UlHbyuGGdvoCjkgz8jMSuHpaNpOzkshLTyAyov+03q5jzew6\n1jxc8YfEzCjKSeZvripiZdlx3tx/gvLjLXxwno5eyZmpWIWBNfvqgNCbZuF0UZERXD0tm1f31NLb\nFwipSU5F5J2cc9S2dLG/rpX9ta1U1rfR1RsAYFxqHJdNGsPk7CQmjkkkJir4f9ZjoiK4cdZ4LspN\n5Xdbq/jJGwe4ZXYupSE6/EKGj4pVGFi9t47ctHgmZyX6HeWCXTsjh6e2VbHp4EkunTzG7zgich7a\nu3rZV9tKeU0LFXWttHT2T32QkRjDrLw0pmQnMSkzMaTHUBaMSeTTSybz642HeWpbFSfbe7hmejam\nKwdlQOh+dwsAPX0B3tx/gpsuHh8WP9iLirKIiYrgpbLjKlYiQS7gHMcaOyivaaG8ppUjDe04+gec\nT8lOYkpWEpOzkkhPjPE7qqfioiP5yKUT+f32Kl7bW0tjezcfmJt7xmkdZPRRsQpxWw+dpLWrl8Uh\nfhrwlMTYKBZNyWRlWQ1//76SsCiLIuHkZFs3a/bVsXpvHS+W1dDW1YsBuenxLJ2WTXFOMrnp8WE/\n91NkhHHrnFzSE2J4eXcNbd29fHjhBJUrUbEKdWv21REZYVw2JXyO7iwryeGVPbXsrm6hZHyK33FE\nRrVAwPF2VROr9taxqryWHUcaCThIT4hmSlYiU3OSKcpJJimET++9V2bGVdOySY6N4untVfxuy1Fu\nL80P+1IpZzf6fhLCzJryeuYWpJESFz7LL1w9PQezt1lZVqNiJeKDU0elVu2tY015HSfaujGDWXlp\nfPaqIpYUZzErL40nNh3xO2pQmF+YQXtPHy/uOk5iTBTvmzVOR9tHMRWrEFbf2sXbVU188dqpfkfx\nVFZyLHML0nmp7Difu6bI7zgiYe/djkplJMZwZVEmS4qzWVSUyZgkreP5bq4syqStq5fXK+pJjI3i\nqmnZfkcSn6hYhbDX99UDoT/NwpksK8nhgef3UNXYQW5a6C0qLRLshnpU6tScUnJ2ZsbymWNp6+rl\n5d01JMdGMb9QUzGMRkMqVma2HHgQiAR+5Jx74LTH/xL4CmBAC/Ap59wOj7PKaVaX15GRGMPM8al+\nR/HctQPFauWu43z08kK/44iEvFNHpV7bW8uqvXXsONqI01EpT0WYcevcPNq6e3l2xzHGpsaRn5Hg\ndywZYecsVmYWCTwELAOOApvM7FnnXNmgzQ4Ai51zJ83seuAR4JLhCCz9AgHH2n11LCrKJCIM/6Kc\nlJXE5KxEVu6uUbESeY8a2rpZ+y5HpT53dRFLirO5KDdVR6U8FBlh3FFawHdf28evNh7m/qVTQnre\nLjl/Q/m/vQCocM5VApjZ48DNwJ+KlXPuzUHbrwfyvAwpf66supn61m6uLAq/04CnXDtjLI+sqaSp\nvYfUhPAZnC/ipcHLypyaV2pvTQvlx1s4erLjT/NKTc1J5urp2UzJ/t8r+MqONVPm85Ix4Sg+JpIP\nLZjAw2v285vNR/iryybqSsFRZCjFKhcYfOnHUc5+NOoe4PkLCSXntrq8fxmbRVMzfU4yfJaV5PD9\nVft5bW8tt8zJ9TuOSFDq6O5jX20L5TUt7K1pfce8UldNy2bqKJlXKtjkpsdz06zxf5pE9OppOX5H\nkhHi6fFJM1tKf7G64l0evxe4F6CgoMDLXY86a8rrKBmXQnZynN9Rhs3svDSykmN5qey4ipXIAOcc\ne4639I+V2lPH5kMNBBzER0dSlJNE8SieVyrYzJ+YzqETbby6u5aCjASKspP9jiQjYCg/eVVA/qDb\neQP3vYOZzQJ+BFzvnDtxpidyzj1C//grSktL3XmnFQBaOnvYcugkH180ye8owyoiwrhmeg7Pbq+i\ns6ePuOhIvyOJ+KKtq5c3Kup5bW8tr+2p43hzJwAzxqdw5dQsinOSyc9I0FGpIGNm3Dw7l6rGDn63\n+Sifu6aIhBgV3nA3lP/Dm4AiMyukv1DdCXxo8AZmVgA8BdztnCv3PKW8w7r9J+gNuLBZxuZsrp2R\nw683Hmbd/hMs1bwwMko456isb+O1Pf1X8G04cIKePkdSbBSLijJZWpzN4uIsclLi3jHGSoJPTFQE\nt5fm871VFfzhrWpuL80/9xdJSDtnsXLO9ZrZ/cCL9E+38KhzbpeZ3Tfw+MPA3wNjgO8NzDbb65wr\nHb7Yo9uafXUkxkQyb0K631GG3WWTx5AYE8lLZTUqVhLWAgHHjqONvLDrOC/tquFAfRsAU3OS+Njl\nhSwpzmbehHRiorQWXagZnxbPkuJsXt1Ty8zxqVpRIswN6Zikc24FsOK0+x4e9PnHgY97G03OxDnH\n6vI6Lp2cOSreYGOjIllSnM3Lu2v418DMsJxaQkavnr4AGw808OKu47y46zg1zV1ERRiXTh7Dx64o\nZGlxFnnpmgcpHCwpzmJ3dTO/317FxDEJJGgMXNjS/9kQc/BEO0caOrg3zMdXDbasJIc/vl3N9qON\nzC0I/6N0Et56+wKsrajnDzuqeWVPDY3tPcRFR7BkajbXzczhquIcTS8ShqIiIvjg3Dy+t6qC5946\nxh3zdQFXuFKxCjGr99YC4bmMzbtZWpxNVISxsqxGxUqC1rnGOlU3dbDtcCPbjzTS2tVLXHQE08em\nMOOiFKZkJxMTFUFHd4A/vl09QollpI1Pi2dpcTav7KllZm4TM8Jw1QxRsQo5a/bVM3FMAhPGJPod\nZcSkJkRzyaQMXtp1nK8sn+Z3HJEha+7sYceRRrYdbuR4cyeRZhSPTWZuQTpTxyYRFRH+p/PlnZYU\nZ1NW3cxzO44xJSuJWF3tHHZUrEJIV28f6/af4C9KR9/E9teWjOUfnt1FRW0LUzQXjASxvoCjrLqZ\nLYca2FfTigPy0+N5/8XjmZWbqrE1o1xkhHHL7FweXr2fV/bUcsNF4/yOJB7TT3gI2XzwJB09faNi\nmoXTLZ85ln98bhfP7ajmb5epWEnwaeroYdPBBjYdbKCls5fU+GgWF2cxJz+drGQtbCz/Kz8jgdKJ\n6by5v565BemMTQ3fiZ5HIxWrELKmvI7oSGPhpDF+RxlxOSlxLCwcw3M7jvH5a4owTYQoQWL7kUZ+\ntLaSFW9X4xxMzUnmkjkZTM1J1oSd8q6uKxnLrmPNPLujik8smqT3tDCiYhVCVpfXUTohY9SulH7T\nxeP5+tNvs+tYMzNzNehT/NMXcLy8u4Yfra1k08GTJMdFcfnkTC6ZNIaMxBi/40kISIiN4roZY3l6\nWxXbjuiK53CikZMhoqa5kz3HW1hcPPpOA55y/cyxREUYz+045ncUGaV6+gL8dvMRlv3Xaj758y1U\nN3Xy9+8rYd3Xrub6i8apVMl5mTchnfz0eJ7feZyO7j6/44hHVKxCxKqBaRZG4/iqU9ITY7hyahbP\n7ThGIKClJmXkdPb08fP1h1jyrVV86XdvERsVyf/cNYdVX1zCx64o1ILH8p5EDKwl2N7Vy8rdNX7H\nEY/o3SBEvLK7lvGpcUwbO7oHbt908The3VPL1sMnKZ2Y4XccCXO9fQF+t+UoD76yj+qmTuYUpPHP\nt8xgaXG2xsSIJ8anxbOgMIONB05wSWEGOSkayB7qVKxCQGdPH2v31XPbvLxR/2a+rGQssVFv8+yO\nYypWckZeLEoccI63q5p4uayGE23d5KfH87HLC5mclcjxpi5+vfGIB0lF+l0zPYcdRxt5fmc1H72s\n0O84coF0KjAErK88QUdPH1dN1yLESbFRXDM9hxVvV9PbF/A7joQZ5xx7qpv57qsVPLHpCFGRxt0L\nJ3Df4slMyU4a9X/YyPBIjI1iaXE25TWtlNe0+B1HLpCKVQh4dU8t8dGRXDoKp1k4k5suHkd9azfr\nKk/4HUVaxrNtAAAeHElEQVTCSGVdKz9YU8lj6w/R3Rfg9tJ8PntVEdPHpahQybC7dOCK0hVvV9On\nMaQhTacCg5xzjld213JFUSZxWvoA6F8SIjk2ime3H2NR0egdzC/eqGnu5Pmd1ZTXtJISF8Uts3OZ\nNyGdyAiVKRk5UZERLJ8xll9tPMzmQw1cUqg/pEOVjlgFub01LVQ1dnD1NJ0GPCUuOpJrZ4zlhV3H\n6erVJcry3rR29fLM9ir+59V9HG5o5/qZY/nCtcUsKMxQqRJfzBifQmFmIi+X1dDZo/e2UKViFeRe\n2d0/zcJVKlbvcMuc8bR09rKyTJcoy/np7QuwpryO/3xpL5sONrCgcAxfWFbMoqIsoiP1lij+MTNu\nuGgc7d19vDYwxY6EHp0KDHKv7K5hVl4q2boE9x0un5xJblo8j288wvtmjfc7joQA5xw7jzXzws5q\nTrb3UJyTzPUzx+pnS4JKblo8s/PTWLf/BAsnjSE9QZPOhhr9eRbETrR2se1II1dPy/E7StCJiDDu\nmJ/P6xX1HGlo9zuOBLmjJ9t5ZG0lv954mJioCP768on81WUTVaokKC0r6X/P1xH50KRiFcRe21uH\nc3C1plk4o9vm5RFh8MQmzSkkZ9bU0cNvNx/he6v2U9/azS2zc7l/aRFF2aN7ol0JbmkJMVw2OZPt\nRxo51tjhdxw5TypWQezVPTXkpMQyY3yK31GC0vi0eBZPzeK3W45oTit5h+7eAC/vruHbK/fydlUT\ni6dm8YVlUzUwXULGkuIsEmIieX5nNc5p+oVQomIVpLp7A6wpr+eqaTmaQ+cs7lxQQE1zF6v21vkd\nRYJAIODYcugk/7lyL6/uqWXa2BT+9pqpXDdjrKYrkZASFx3J0uJs9te1sbpc72+hRMUqSK2vPEFr\nV6+mWTiHq6Zlk5kUy+M6HTjqra88wU3ffZ0ntx4lNT6aT145ibsWFJCeqMG/EpoumZRBRmIMDzy/\nR5OGhhAVqyD1/M5qEmMiuaIo0+8oQS06MoLb5uXx2t5aapo7/Y4jPqisa+XexzZz5yPrOdnWze2l\n+dy3eDITxiT6HU3kgkRFRHBtSQ57jrfw1NajfseRIVKxCkK9fQFe3FXD1dNzdPpiCO6Yn09fwPG7\nLXrjGU1OtHbx98/s5Nr/WsMbFfV88dqpvPrFJczOTyNCp88lTFyUm8rF+Wn850vldHRr0tBQoGIV\nhNZXNtDQ1s0NF43zO0pIKMxMZOGkDJ7YdISADpeHvc6ePr63qoLF31rFLzcc5s4F+az60lLuv6pI\nf4hI2DEzvn79NI43d/LoGwf8jiNDoGIVhP74dv9pwCXFWgdvqO5aUMDhhnbNVhzGAgHHU1uPctV/\nrOLfX9jLwkljePHzV/Ivt1xEVnKs3/FEhs0lk8ZwzfQcvr9qPydau/yOI+egYhVk+k8DHucqnQY8\nLzdcNI7xqXH8YE2l31HEY845Xt9Xz/sfep2/+80OxiTF8utPLORHf1XKlOwkv+OJjIivXl9MR08f\n//Nqhd9R5BxUrILMhgMDpwFnjvU7SkiJjozgY1cUsvFAA1sPn/Q7jnhky6EG7vrhej784w2cbOvh\nwTtn88xnLufSyWP8jiYyoqZkJ3PH/Hx+sf4QB+vb/I4jZ6FiFWRWvF1NfHQkS4o1zcL5unNBASlx\nUTyyWketQt2uY0187Keb+OD311FR28o/3lTCq19czM2zc4nQBJ8ySn3+miJioiL41ot7/Y4iZ6FF\nmINIX8ANnAbMJj5GpwHPV1JsFHdfOoHvrdrPgfo2CjN1uX2o2V/XyrdXlvPHt6pJjY/my8uL+ehl\nE0mI0VuVSHZyHJ9YNIkHX9nHPYdPMrcg3e9IcgZ6twoiGw6coL61mxt1NeB79leXTeSHaw/ww7WV\n/NsHLvI7zqj2qw2Hh7xtQ1s3r+2pZevhk0RHRrC0OIsrpmQRHxPJ77cdG8aUIqHl3isn8csNh/nG\nit385pOXamWOIKRTgUFkxdvVxEVH6GrAC5CdHMcH5+bxuy1HqWvR1TPBrra5k99uPsK3V+5lx9FG\nLps8hi9eV8yykrE6aityBomxUfztsiI2HTzJyrIav+PIGahYBYm+gOOFnTVcNS1bpz0u0CcWFdLT\nF+Bnbx70O4q8i6rGDn654RAPvrKPnceauGxyJl+4tpgbZ40nKVbf/yJnc0dpPpOzEnnghT30aAH6\noDOkYmVmy81sr5lVmNlXz/D4NDNbZ2ZdZvZF72OGvw2VJ6hv7dKkoB6YlJXEdSVjeWzdQVo6e/yO\nI4McrG/jp28e4KHXKthf18qS4iy+fN00brhoHKnx0X7HEwkJUZERfPX66VTWtfGE1kkNOuf809DM\nIoGHgGXAUWCTmT3rnCsbtFkD8DfALcOSchT43ZajJMdFcc30HL+jhIXPLJ3CC7uO871V+/nK8ml+\nxxnVAs6xr6aF1eX1HDzRRmJMJNeW5LBw0hjN1SbyHl0zPZsFEzP4zsvl3DInV0d6g8hQjlgtACqc\nc5XOuW7gceDmwRs452qdc5sAHR54D5o7e1ixs5qbLh6vXzQeuSgvlVvn5PLj1w9wpKHd7zijUldv\nH+srT/Cdl8v52bpDNLR1ceNF4/jSddNYUpyt73WRC2BmfO2GadS3dvNDTYwcVIZSrHKBwccajw7c\nJx75w45qOnsC3F6a73eUsPKl5cVEGPy75nwZUVWNHXxjxW6++cIent1xjLjoSO4ozedL103j8imZ\nxERpaKeIF+YUpHPjrHE8sqaS2uZOv+PIgBE9dmhm9wL3AhQUFIzkroPab7ccoSg7iYvzUv2OElbG\npcZz75WT+e9X9vHRyyYyb4LmfBkuzjm2Hj7Jo68f5IVdxwEoGZfC5ZPHkJ+RoEvCRYbJl68r5qVd\nx/n2ynIe+OAsv+MIQztiVQUMPpSSN3DfeXPOPeKcK3XOlWZlaUoBgIraFrYdbuT20nz98hkGn7xy\nEtnJsfzLH8twzvkdJ+w0d/bw8/WHuPG/X+eD31/H2n11fHxRIWu+vJS7FhRQMCZR39ciw2jCmEQ+\nculEnth8hJ1VTX7HEYZWrDYBRWZWaGYxwJ3As8Mba/T47eajREUYt8zR2dXhkBgbxRevK2bb4Uae\ne6va7zhh4dTRqS/9dgeX/Osr/N/f7wTgX26ZyfqvX83Xrp9Oblq8zylFRo/PXVPEmMQY/uHZXfoD\nMgic81Sgc67XzO4HXgQigUedc7vM7L6Bxx82s7HAZiAFCJjZ54ES51zzMGYPeT19AZ7cWsXSadlk\nJcf6HSds3TY3j5+9eZBvPr+Ha6ZrnrD3qqmjh99vq+LXGw+z53gLCTGR3DJnPHctKOCi3FQdmRLx\nSUpcNF++bhpffvItntl+TH+o+2xIv2GccyuAFafd9/Cgz4/Tf4pQzsPqvXXUt3Zp0Powi4gw/uGm\nGdzxyDr++Q+7+catWupmqPoCjtcr6nlq61Fe2Hmcrt4As/JS+catF3HTxZrMUyRY3DYvj19sOMS/\nrdjNNSU5+tn0kV55H/1m8xEyk2K0hM0IWFCYwSevnMzDq/ezeGomy2dqItaz2V3dzNPbqvj9tipq\nW7pIiYvitnl53LWggJm5ushCJNhERBj/+P4Z3Pq9N3notQrN3+cjFSuf1Ld28eqeWj52RSHRkbr8\nfCT83bKpvLm/nq88+TYX56cxLlXjgAarbenk2e3HeHJrFburm4mKMJZOy+aDc3NZOi2b2CjNOyUS\nzOYWpPPBuXn8eO0Bbi/NpzAz0e9Io5KKlU9+sf4QvQGn04AjKCYqggfvnMON/72Wv3tiB7/4+CVE\nRoT/uKBfbTj8ro+1d/Wyq7qZt6ua2F/bigPy0uO56eLxzMpNJTE2ioa2Hp7c8p4uBBaREfaV5cW8\nsLOaf3x2Fz/96/ka++gDFSsfdPb08di6Q1w9LZsp2Ul+xxlVCjMT+cf3z+DLv3uLH6zZz6eXTPE7\n0ojr6O6jrLqZt6saqahtJeBgTGIMi4uzmJ2fRnZynN8RReQ9yk6J4wvXFvP//lDGc29V8/6Lx/sd\nadRRsfLBk1uP0tDWzSeunOR3lFHpL+blsbq8jm+/VE5xTjJXj4L1GTt7+tg9cGRqX00rfc6RnhDN\nFVOymJWXyrjUOP1lKxIm/uqyiTyzvYr/99wurizKJC0hxu9Io4qK1QgLBBw/WnuAWXmpXFKY4Xec\nUcnMeODWizjS0M6nfrmVR/9qPlcUZfody3NtXb28vLuGn68/xL6aFnoDjtT4aC6dPIZZeankpsWr\nTImEocgI4xu3zuKm777Ov63Yzb/fdrHfkUYVFasRtnJ3DQfq2/ifu+bol5qPkuOieexjC7jzkfV8\n4rHNPHbPAuZPDP2ie7Ktm1f21PLSruOs2VdHZ0+AlLgoFhRmMCs3lbyMBCL0fScS9krGp/CJRZN4\nePV+bpmTy2WTw++Px2ClYjXCfrimkrz0eK6fOdbvKKNeWkIMP7/nEu54ZB1//ZNN/PLjl3Bxfprf\nsc5bVWMHL+06zku7ath4sIG+gGNcahx3lOZz46zxlNe0qEyJjEKfv6aI53dW8/Wn3uaFz19JXLSu\n7B0JKlYjaMuhk2w+dJJ/uKmEKE2xEBSykmP55ccv4fYfrOPuH2/gv+6YHfRjrpxzlNe08tKu47xY\ndpydVf0LHBRlJ/GpxZO5dkbOO2ZCr6ht9TOuiPgkLjqSf73lIj784w08+Mo+zW01QlSsRtCP1laS\nEhelKRaCzLjUeH718YXc+/Mt3POzzdxzRSFfWT6NmKjgKb99Acf2Iyd5cVcNL+06zsET7QDMLUjj\na9dPY1lJDpOydIWpiLzTFUWZ3FGazw9W7+eqadlhMeQh2KlYjZDKulZe2HWcTy2eTKKWGgg6+RkJ\nPP3py/jGit38+PUDbDzQwHc/NIcJY/ybYK+muZPV5XWsKa/j9Yp6Gtt7iI40LpucySeunMSy6Tlk\np2hqBBE5u/97UwnrD5zg849v5/nPLyIlLtrvSGFNv+FHyDdf2EN8dCR/fXmh31HkXcRFR/JPN8/k\n0smZfPl3O7j+wbXcvXAC91xROCIFpqu3j80HT7KmvI7V5XXsOd4C9J+uvHpaDouLs1hSnKU3RRE5\nL0mxUfzXHbP5i4fX8Q/P7OK/7pjtd6SwpmI1AjZUnuDFXTV8YdlUspJj/Y4j57B85lguykvl31/Y\nww/XVvKTNw9ye2ken7xyMvkZCe/5eU+fAb27N8CRk+0cPNHGofp2DjW00dPniDRjQmYCy2eMpSgn\nibEp/XNMtXb28ocd1Rf6zxORUWhuQTqfvWoK33l5H0unZWvi0GGkYjXMAgHHv/xxN+NS4/j4Ik0I\nGipy0+J58M45/N2yqTy8ej9PbDrCL9YfZtrYZK6YkskVRZksKMwgIebcP0J9AUdNcyf761qpbuqk\nurGD6qZOals6CTgwYGxqHPMmZFCUncSkrEStyycinrt/6RTWlNfxf55+m3kT0slN03qpw0HFapg9\ns6OKt6ua+PbtFxMfo1+WoWbCmES+cess/ubqIp7eVsXr++p5bN0hfvT6AQAyEmPITo4lJyWO9IRo\negOO7t4A3X0B2rv6qGrs4HhzJ30B96fnTI6LYlxqHNPGZjFhTCIFGQn63hCRYRcVGcF37pjD9Q+u\n4bO/2sqv712oP+KGgTnnzr3VMCgtLXWbN2/2Zd8jpaO7j6v+cxWZSbE885nLiQjCBX/PtkBvuPrQ\nJQUX9PUd3X1sPtTAtsON1DR3UtPcRW1LJyfbu4mOjCAmMoKYqAjioiMZnxpHbno8uWkJ7KttYWxK\nHMkaIyUi5+FC37NO98e3qvnMr7Zy5/x8vnHrRZqseojMbItzrvRc2+mI1TD68euVVDd18l93zA7K\nUiXvTXxMJIuKslhUlHVeXzcaS6yIBJ8bZ42jrHoyD722nxnjU7j70ol+RworwTNRT5ipae7k+6v2\nc21JDgsnjfE7joiIyJ98YVkxV03L5p+eK2N95Qm/44QVFathEAg4vvjbHfQ5x9dvmO53HBERkXeI\niDC+c+dsCsYk8OlfbuXoyXa/I4UNFath8OgbB1i7r57/+74SJmb6N8GkiIjIu0mJi+aHHymlpzfA\nR3+yiROtXX5HCgsqVh4rO9bMv7+wl2UlOXxogbcDDkVERLw0OSuJRz5SypGGdj7y6EaaOnr8jhTy\nNHjdQ509fXzu8W2kJkTzzQ/O0pUWQUqDyEVE/telk8fw8N3zuPexzfz1Tzby83su0dJrF0BHrDz0\nbyt2s6+2lW/ffjEZiTF+xxERERmSpcXZ/M9dc9hxtImP/2wznT19fkcKWSpWHnlyy1EeW3eIj19R\neN6X4YuIiPht+cxx/MdfzGL9gRPc87NNNHfqtOB7oWLlgRd3HefLT77F5VPG8KXlxX7HEREReU8+\nMCeP/7jtYjZUNnDb99+kqrHD70ghR8XqAr1RUc9nf7WNWXmpPHJ3qZYHEBGRkPbBeXn87GMLqG7s\n5JaH3mBnVZPfkUKKitUF2Hb4JJ94bDOFmYn85KPzNdhPRETCwuVTMnny05cRExnB7T9Yxws7q/2O\nFDJUrN6jjQca+OhPNpGVHMvP71lAWoIGq4uISPiYmpPM05++jKLsJO77xVa+8ru3aO3q9TtW0FOx\nOk/OOX7yxgE+9MP1jEmM4Rf3XEJ2SpzfsURERDyXnRLHb++7jE8tmcxvthzhhgfXsuXQSb9jBTUV\nq/PQ0d3H3/1mB//0XBlLp2Xz+/svJz8jwe9YIiIiwyYmKoKvLJ/GE/deSl/A8RcPv8m//KGMpnZd\nNXgmKlZD9NbRRm79/pv8fnsVX7x2Kj/48DxS4qL9jiUiIjIiFhRm8MLnF3F7aT4/fuMAV37rNX64\nplJzXp1Gxeocqps6+LsntvP+775BXUsnj350PvdfVUREhGZVFxGR0SU5LpoHPjiLFX+ziNn5afzr\nit1c/Z+r+dWGw7R3a/wVaEmbd1Xf2sVjbx7kkbWVBBx8aslkPr1kMsk6SiUiIqPc9HEp/OxjC3ij\nop4Hnt/D159+m288v5vb5uVx98IJTMpK8juib1SsBgkEHGsr6nli02FWltXQ0+d436xxfGX5NI2l\nEhEROc3lUzJ59v7L2XzoJI+tO8Qv1h/iJ28cZN6EdJaV5HBtSc6oK1lDKlZmthx4EIgEfuSce+C0\nx23g8RuAduCjzrmtHmcdFg1t3by5v543Kk6wem8tx5o6SU+I5iOXTuTO+fkU5ST7HVFERCRomRnz\nJ2Ywf2IGtS3T+e3mo/zxrWoeeH4PDzy/h8lZiSwqymJOQRpzC9LJS4+nvzaEp3MWKzOLBB4ClgFH\ngU1m9qxzrmzQZtcDRQMflwDfH/hv0OjuDXC8qZOKuhbKa1opr2mh7Fgze463AJAUG8XCSWP4+o3T\nWVaSoxnURUREzlN2chyfWTqFzyydwtGT7bxcVsPLu2t5YtMRfvrmQQCykmMpGZfCpKxEJmclMSkr\nkfz0BLKSY4mLDv3fvUM5YrUAqHDOVQKY2ePAzcDgYnUz8JhzzgHrzSzNzMY553ybqrWyrpV/eq6M\nmuZOalu6aGjrfsfj2cmxFI9N5saLxnF5USazclOJitRYfhERES/kpSfw0csL+ejlhfT2BdhzvIVt\nh0+y9XAj5TUtbDzQQMdpVxSmJUSTkxxHWkI0yXHRpMRFkRQXRXx0JNGREURHRhAV2X+0KxBw9DlH\nIOCYlZfGNSU5fvwz/8xQilUucGTQ7aP8+dGoM22TC/hWrKIjIzjZ3k1eegLzJqSTkxJHTkosk7KS\nmJqdTGqCBqGLiIiMhKjICGbmpjIzN5W7L+2/LxBwHG/upLKujWONHdS2dFLT3EVNcyeN7T1UNXaw\np7OHls5eOnv66A04+gLuz57bDO5eOCGkipVnzOxe4N6Bm61mtnck9y9nlAnU+x0iyOk1Oju9Pmen\n1+fc9BqdxV/6HSAE/PPAxzCbMJSNhlKsqoD8QbfzBu47321wzj0CPDKUYDIyzGyzc67U7xzBTK/R\n2en1OTu9Puem10jCyVAGFW0Cisys0MxigDuBZ0/b5lngI9ZvIdDk5/gqERERET+c84iVc67XzO4H\nXqR/uoVHnXO7zOy+gccfBlbQP9VCBf3TLfz18EUWERERCU5DGmPlnFtBf3kafN/Dgz53wGe8jSYj\nRKdmz02v0dnp9Tk7vT7nptdIwob1dyIRERERuVCauElERETEIypWo5iZLTezvWZWYWZf9TtPsDGz\nR82s1sx2+p0lGJlZvpm9ZmZlZrbLzD7nd6ZgYmZxZrbRzHYMvD7/5HemYGRmkWa2zcz+4HcWES+o\nWI1Sg5Yquh4oAe4ysxJ/UwWdnwLL/Q4RxHqBLzjnSoCFwGf0PfQOXcBVzrmLgdnA8oGrpuWdPgfs\n9juEiFdUrEavPy1V5JzrBk4tVSQDnHNrgAa/cwQr51z1qcXWnXMt9P9yzPU3VfBw/VoHbkYPfGhQ\n6yBmlgfcCPzI7ywiXlGxGr3ebRkikfNmZhOBOcAGf5MEl4HTXNuBWmClc06vzzt9B/gyEPA7iIhX\nVKxE5IKYWRLwJPB551yz33mCiXOuzzk3m/7VKBaY2Uy/MwULM3sfUOuc2+J3FhEvqViNXkNahkjk\nbMwsmv5S9Uvn3FN+5wlWzrlG4DU0Zm+wy4H3m9lB+ociXGVmv/A3ksiFU7EavYayVJHIuzIzA34M\n7HbOfdvvPMHGzLLMLG3g83hgGbDH31TBwzn3NedcnnNuIv3vP6865z7scyyRC6ZiNUo553qBU0sV\n7QZ+45zb5W+q4GJmvwbWAcVmdtTM7vE7U5C5HLib/iMN2wc+bvA7VBAZB7xmZm/R/4fMSuecphQQ\nCXOaeV1ERETEIzpiJSIiIuIRFSsRERERj6hYiYiIiHhExUpERETEIypWIiIiIh5RsRIRERHxiIqV\niJyTmfUNzFO1y8x2mNkXzCxi4LFSM/vvs3ztRDP70Mil/bN9dwys1xcUzOwOM6swM81pJRKGVKxE\nZCg6nHOznXMz6J9B/HrgHwCcc5udc39zlq+dCPhSrAbsH1ivb8jMLHK4wjjnngA+PlzPLyL+UrES\nkfPinKsF7gXut35LTh19MbPFg2Zh32ZmycADwKKB+/524CjSWjPbOvBx2cDXLjGzVWb2OzPbY2a/\nHFg2BzObb2ZvDhwt22hmyWYWaWbfMrNNZvaWmX1yKPnN7PdmtmXg6Nu9g+5vNbP/NLMdwKXvss8Z\nA59vH9hn0cDXfnjQ/T84VczMbPnAv3GHmb3i4f8GEQlSUX4HEJHQ45yrHCgP2ac99EXgM865N8ws\nCegEvgp80Tn3PgAzSwCWOec6B4rJr4HSga+fA8wAjgFvAJeb2UbgCeAO59wmM0sBOoB7gCbn3Hwz\niwXeMLOXnHMHzhH/Y865hoH1+zaZ2ZPOuRNAIrDBOfeFgfUz95xhn/cBDzrnfjmwTaSZTQfuAC53\nzvWY2feAvzSz54EfAlc65w6YWcZ5v9AiEnJUrETES28A3zazXwJPOeeODhx0Giwa+K6ZzQb6gKmD\nHtvonDsKMDAuaiLQBFQ75zYBOOeaBx6/FphlZrcNfG0qUAScq1j9jZl9YODz/IGvOTGQ5cmB+4vf\nZZ/rgP9jZnkD/759ZnY1MI/+kgYQD9QCC4E1p4qec67hHLlEJAyoWInIeTOzSfQXkVpg+qn7nXMP\nmNkfgRvoP4J03Rm+/G+BGuBi+ocjdA56rGvQ532c/T3KgM865148j9xLgGuAS51z7Wa2CogbeLjT\nOdd3tq93zv3KzDYANwIrBk4/GvAz59zXTtvXTUPNJSLhQ2OsROS8mFkW8DDwXXfaKu5mNtk597Zz\n7pvAJmAa0AIkD9oslf6jQQHgbuBcA8X3AuPMbP7APpLNLAp4EfiUmUUP3D/VzBLP8VypwMmBUjWN\n/qNKQ97nQKGsdM79N/AMMAt4BbjNzLIHts0wswnAeuBKMys8df85solIGNARKxEZiviBU3PRQC/w\n8//fzh2jNBCEYRh+vxN4BQ/gJbyBlVZaW3oA65Q2gpVFLqCVkOAJUtmJVwixsBLBkIzFDIIiBmEg\nsrxPtSwLM9v9+//fDnDxw3NnSfaBNfAITNr1qoXCx8AVcJPkBJgCr78tXEp5T3IEXLZc1Bu163RN\nHRU+tJD7M3Cw4T2mwGmSJ2rxNPvjmofAcZIlMAdGLa91DtynHkGxpObMZi0cf9vuL6h/VEoasHz7\n4JSkwUiyC9yVUva2vJUv2kjyM9AvaTgcBUoashWwk392QCi1a/ey7b1I6s+OlSRJUid2rCRJkjqx\nsJIkSerEwkqSJKkTCytJkqROLKwkSZI6+QC3/xYjDNrWqQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(viking['viking_ra'], viking['viking_dec'])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-27T11:26:49' [astropy.utils.metadata]\n", + "WARNING: MergeConflictWarning: Cannot merge meta key 'DATE-HDU' types and , choosing DATE-HDU='2017-10-27T11:26:49' [astropy.utils.metadata]\n" + ] + } + ], + "source": [ + "# Given the graph above, we use 0.8 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, viking, \"viking_ra\", \"viking_dec\", radius=0.8*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add SERVS" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl83VWB///Xyc2+703T7Et32tK9dGNVQAoqIsgmCgMI\nbjP6G53FmfE7/ubrLCqoYEVERUEW2aGIsrelTfd9TZNmb/Z9T+75/tGUqVho2n6Sz13ez8ejD5Kb\nm9x3L+nNO+eczznGWouIiIiInLsQtwOIiIiIBAoVKxERERGHqFiJiIiIOETFSkRERMQhKlYiIiIi\nDlGxEhEREXGIipWIiIiIQ1SsRERERByiYiUiIiLiEBUrEREREYeEuvXAqampNi8vz62HFxERERm1\nrVu3Nllr0053P9eKVV5eHlu2bHHr4UVERERGzRhTMZr7aSpQRERExCEqViIiIiIOUbESERERcYiK\nlYiIiIhDVKxEREREHKJiJSIiIuIQFSsRERERh6hYiYiIiDhExUpERETEISpWIiIiIg5RsRIRERFx\niIqViIiIiENUrEREREQcEup2ABl7j5dUjsnXvXFRzph8XREREX+lESsRERERh6hYiYiIiDhExUpE\nRETEISpWIiIiIg5RsRIRERFxiIqViIiIiENUrEREREQcomIlIiIi4hAVKxERERGHqFiJiIiIOETF\nSkRERMQhKlYiIiIiDlGxEhEREXGIipWIiIiIQ1SsRERERByiYiUiIiLiEBUrEREREYeoWImIiIg4\nRMVKRERExCEqViIiIiIOUbESERERcYiKlYiIiIhDVKxEREREHKJiJSIiIuIQFSsRERERh6hYiYiI\niDhExUpERETEISpWIiIiIg5RsRIRERFxiIqViIiIiENUrEREREQcomIlIiIi4hAVKxERERGHqFiJ\niIiIOETFSkRERMQhKlYiIiIiDlGxEhEREXGIipWIiIiIQ1SsRERERByiYiUiIiLikFEVK2PM5caY\ng8aYUmPMtz/ifguMMUPGmM84F1FERETEP5y2WBljPMADwBXAdOBzxpjpH3K//wT+5HRIEREREX8w\nmhGrhUCptbbMWjsAPAFcc4r7fQV4BmhwMJ+IiIiI3xhNsZoEVJ30fvXIbe8zxkwCPgX8zLloIiIi\nIv7FqcXr9wHfstZ6P+pOxpg7jTFbjDFbGhsbHXpoEREREd8QOor71ADZJ72fNXLbyeYDTxhjAFKB\nK40xQ9ba50++k7X2IeAhgPnz59uzDS0iIiLii0ZTrDYDxcaYfI4XqhuAG0++g7U2/8TbxphfAy9/\nsFSJiIiIBLrTFitr7ZAx5svAa4AHeMRau9cYc/fIx1ePcUYRERERvzCaESustWuANR+47ZSFylp7\n27nHEhEREfE/2nldRERExCEqViIiIiIOUbESERERcYiKlYiIiIhDVKxEREREHKJiJSIiIuIQFSsR\nERERh6hYiYiIiDhExUpERETEISpWIiIiIg5RsRIRERFxiIqViIiIiENUrEREREQcEup2ABERkUD3\neEnlmHzdGxfljMnXlbOnESsRERERh6hYiYiIiDhExUpERETEISpWIiIiIg5RsRIRERFxiIqViIiI\niENUrEREREQcomIlIiIi4hAVKxERERGHqFiJiIiIOETFSkRERMQhKlYiIiIiDlGxEhEREXGIipWI\niIiIQ1SsRERERByiYiUiIiLiEBUrEREREYeoWImIiIg4RMVKRERExCEqViIiIiIOUbESERERcYiK\nlYiIiIhDVKxEREREHKJiJSIiIuIQFSsRERERh6hYiYiIiDhExUpERETEISpWIiIiIg5RsRIRERFx\niIqViIiIiENUrEREREQcomIlIiIi4hAVKxERERGHqFiJiIiIOETFSkRERMQhKlYiIiIiDlGxEhER\nEXGIipWIiIiIQ1SsRERERByiYiUiIiLiEBUrEREREYeoWImIiIg4JNTtACIiIr7i8ZJKtyOInxvV\niJUx5nJjzEFjTKkx5tun+Pg1xphdxpgdxpgtxphlzkcVERER8W2nHbEyxniAB4DLgGpgszHmRWvt\nvpPu9gbworXWGmNmAU8BU8cisIiIiIivGs2I1UKg1FpbZq0dAJ4Arjn5DtbaLmutHXk3BrCIiIiI\nBJnRFKtJQNVJ71eP3PYXjDGfMsYcAF4BvuhMPBERERH/4djidWvtc8BzxpgVwL8Dl37wPsaYO4E7\nAXJycpx6aBERkXNmraWle4Dq1h46+4bev80C8VFhFKTGEBcZ5m5I8XmjKVY1QPZJ72eN3HZK1tp3\njTEFxphUa23TBz72EPAQwPz58zVdKCIirqpr7+WlnbW8d6SZnVVttPYMfuT9J8RHUJgWy+ysRLKT\no8cppfiT0RSrzUCxMSaf44XqBuDGk+9gjCkCjowsXp8LRADNTocVERE5Vx19g7y6u47nttdQUt6C\ntTB5QiyXTZ9A/5CX7KRoEqPCMMZgDBigsaufIw1dHGnsZlN5C+8daWZuThKXz8wgNkI7F8n/Ou13\ng7V2yBjzZeA1wAM8Yq3da4y5e+Tjq4FrgVuNMYNAL3D9SYvZRUREXFfX3suv1h/l8ZJKuvqHKEiN\n4euXTOaaOZnkpcYAH76PVVZSNFlJ0aycAv1Dw7x1oJF1pY3sq2vnsukZLMpPJsSY8fzriI8aVc22\n1q4B1nzgttUnvf2fwH86G01EROTclTZ0sfqdI7ywowavhatmTeS2C/KYk52IOYsyFBHq4fKZGczN\nSeSlXbW8tLOWvbXt3Lo4j/BQHWgS7DR+KSIiAam2rZcf/fkQz2yrJjw0hJsW5XL7snzH1kalx0fy\nxaX5bK1o5bntNTy68ajKlahYiYhIYGnrGeCBt0r5zYYKsPCFpfncc2EhKbERjj+WMYb5ecl4Qgx/\n2FrN7zZWcMuSXMI8KlfBSsVKRET8zqnWQg17LZuOtvD6vnr6Boc5PyeJS6alkxQdzmt768c0z/k5\nSVjgmZFydfNilatgpWIlIiJ+r6yxi5d31XGso4+CtBiuOi+TjITIcc0wNycJay3Pbqvh6S1VfG5h\nzlmt4RL/pmIlIiJ+q7NvkFd217Grup3E6DBuXJjDjMx41wrNvNxkuvqHeW3vMXZWtzEnO8mVHOIe\nFSsREfE71lq2VbayZvcxBoa9XDw1nZWT03xi+m15cSr76zp4cWctBamxxEdpt/Zg4v53oIiIyBmo\naO7mkfXlPLOthvT4CL5ycRGXTpvgE6UKIMQYPjMvi2Gv5bntNWhbx+CiESsREfELQ8NeHl5Xzn2v\nH8JauGZOJgvyfHNjztTYCD4+I4OXd9WxtaKV+XnJbkeScaJiJSIiPm9PTTvfemYXe2s7uGz6BObm\nJJHg41NsiwtS2FvbwSu76yhKjyUxOtztSDIOfGPcVERE5BT6h4b5/qsHuOaB9TR09vOzm+by0C3z\nfL5UwfEpwWvnZmEtvLSz1u04Mk40YiUiIj7p4LFOvv7kDvbXdfDZ+Vn805XTSYj2/UJ1suSYcFZO\nSePP++qpbu0hK8mZXd/Fd2nESkREfIrXa3l4bRmrfrKOxs4+Hr51Pv/1mdl+V6pOWFKQQlSYhzf2\nN7gdRcaBRqxERMRn1LT18s2ndrKhrJlLp03g+9eeR+oYHEUzniLDPCwvTuVP++qpaulx7KxC8U0a\nsRIREddZa3luezWX/+hddlW38V/XzuIXt87z+1J1wpKCFKLDPbxxYGyP1hH3acRKRERc1dYzwD89\nt4dXdtcxPzeJH352DjkpgTWqExHmYXlxGq/tPUZlSw85GrUKWBqxEhER12w52sIV96/lT/uO8feX\nT+HJu5YEXKk6YXFB8vFRq/0atQpkKlYiIjLuvF7Lg2+Xcv1DGwkPDeG5e5Zyz4VFeEJ8b7NPp0SE\nelhRnMbhhi4qm7vdjiNjRFOBIiIyZh4vqfyr27r6h/jD1ioO1Xdx3qQEPnX+JHZVt7Orut2FhONr\ncUEKaw838vahRm5dEuN2HBkDKlYiIjJuypu6eXJzJT0Dw1wzJ5OFeckYHzySZqyEh4awMD+Ftw82\n0NYzoN3YA5CmAkVEZMx5reWtgw08vLaMME8Id68sZFF+SlCVqhPm5yUBsKWi1eUkMhY0YiUiImOq\nq3+Ip7dUcbihi1lZCXxqziQiwjxux3JNUnQ4xRNi2XK0hYumpAf0urJgpBErEREZM1UtPfz0zcOU\nN3XzqTmTuH5+dlCXqhMW5iXT0TfEofpOt6OIw1SsRERkTDy5uZKH1pbhCTHcvbKQBfnBtZ7qo0zJ\niCcuMpTNR1vcjiIO01SgiIg4amDIy3df2stjJZUUpcdyw/xsoiP04+ZknhDDvNwk3jnYqEXsAUYj\nVnJa1lr213Xw9JYqtle2MjDkdTuSiPioho4+PveLjTxWUsldKwv4/JI8laoPMT83GdAi9kCj73b5\nSJXN3by69xgVzT2EeQzbq9p4cWcts7MSOW9SAudlJbgdUUR8xNaKVr70u6109g3x0xvP56pZmafc\nx0qOS44Jpyg9lq0VrVrEHkA0YiWn1DswzGMlFax+t4zmrgGumZPJd66azh3L8pk+MZ7tVa2s+uk6\nnt9e43ZUEfEBj5dUcsNDG4gM8/DcvRdw1axMtyP5hQV5ybT3DnJYi9gDhkas5JRe2FnDgbpOLp2W\nztKiVCJCj1/FU5AWS0FaLKsGM3lt7zH+/pld5KfGMDs70eXEIuKGwWEv//riXh4vqWTF5DR+fMMc\nrRc6A9MmxhMXEcrmilamTox3O444QMVK/srumuNHS1w2fQIXTUk/5X0iwzz87OZ5XP3TdfzNo1t4\n6SvLmBAfOc5JRcQpZzNl1zMwxOObKilr7GZFcRofmz6BNbuPjUG6wOUJMczKSmBjeQt9g8NEaisK\nv6epQPkLXf1DvLCjhkmJUawoTvvI+ybHhPPw5+fT3T/EnY9uoW9weJxSiojbmjr7+dnbR6ho7uEz\n87K4fGYGIdpK4azMnJTAsPf4RULi/1Ss5H3WWl7YUUP/kJfPzMsa1ULKqRnx/Oj6Oeyqaedbz+zC\nWjsOSUXETUcau/jZO0foHRzm9qX5zM1JcjuSX8tOjiYhKow9NYF/CHUwULGS9+2qaWdvbQeXTptw\nRtN6H5uRwTcum8wLO2p5bW/9GCYUEbdtKm/hV+vLiYsM5Z4Li8hLjXE7kt8LMYaZmfEcaujSyH8A\nULES4PgU4Is7aslOimJZUeoZf/7dKwspTIvhB386yLBXo1YigcZrLa/squX5HTUUpcdy98pCkmO0\nSN0p52k6MGCoWAkAG4400Tc4zKfnjm4K8INCPSF882NTONzQxXPagkEkoPQNDvPbDRWsP9LMBYUp\n3LI4T4usHZal6cCAoWIlDA172XS0lSkZced0Zd/lMzM4b1ICP/rzIfqHNJwtEgjaewd56N0yDjd0\ncs2cTK6alamNLMeApgMDh4qVsKe2g+7+IRYXpJzT1zHG8P99fAo1bb08sanKoXQi4pb6jj5Wv3OE\nlp4BPr8kj0X55/YaIR9N04GBQcVK2FjWTMrI0QrnanlxKosLkvnJm6X0DAw5kE5E3FDW1MXP3z2C\n12u5c3kBxRPi3I4U8E5MB+7WdKBfU7EKcjVtvVS29LC4IMWRPWiOj1pNpamrn1+tP3ruAUVk3O2q\nbuNX648SFxHG3RcWkpkY5XakoHBiOvCwpgP9mopVkNtY1kyYxzi6D8283CQunZbO6neO0N476NjX\nFZGxt+5wI09sriIrKYq7VhaQpONpxpWmA/2filUQ6xkYYmdVG+dnJxEV7uwVPl+/dDKdfUM8vUVr\nrUT8wYntFNbsOcaMzHi+uDSf6HCdejbe3r86sFbFyl+pWAWxrRWtDHntOS9aP5WZkxKYl5vEYyWV\neLWvlYhP6xsc5onNVaw/0sySwhQ+tzCHMI9+PLghxBimZsRR2tDJ4LDX7ThyFvQvJ0h5rWVjWTN5\nKTFkJIzN4cm3LM6lvKmbdaVNY/L1ReTctfcMcusjm9hT084VMzO46ryJOvPPZVMz4hgctpQ3dbsd\nRc6CilWQOtLQRWvPIIsLksfsMa44L4OUmHB+u7FizB5DRM5eTVsv165+jx2VbVy/IJvlxWkYlSrX\nFaTFEuYxHKzvdDuKnAUVqyC1p7adiNAQpk2MH7PHiAj1cP2CbN7YX09NW++YPY6InLl9tR186oH1\n1Hf08ZsvLmR2VqLbkWREmCeEgtRYDh7r1MH2fkjFKgh5rWVfbQeTJ8SN+TqKmxbnAvB4iUatRHzF\nusNNfPbnG/CEGP5w9wUsKdTGn75mSkYcLd0DNHUNuB1FzpCKVRCqaO6he2CYGZljN1p1wqTEKC6Z\nNoEnNlXpmBsRH/Dc9mpu+9UmspKiePaeC5iSoY0/fdGJ/y8Hj+nqQH+jYhWE9tW2ExpimDJOOynf\nsjiX5u4BXt19bFweT0T+mrWWB98u5W+f3MnC/GSeunsJExO08aevSooOJz0uggNaZ+V3VKyCjLWW\nvXUdFKXHEjFOp9MvK0olPzVGi9hFXDLstXznhT381x8Pcs2cTH79hYXER4a5HUtOY2pGHEeburUL\nu5/R7m9Bpra9j7aeQS6ekj5ujxkSYrhpUQ7fe2U/++s6xnTBvEige7yk8ozuPzDk5cktVeyv62BF\ncRoL8pL5w9bqMUonTpqSEc+7h5sobehi5qQEt+PIKGnEKsjsrW3HwLiXm0/PzSLMY3h2m17QRcZL\nd/8Qv1xXxoG6DlbNzuTymRnao8qP5CRHExkWom0X/IyKVZDZV9tBXmoMMRHjO1iZHBPORVPSeW57\nLUPaTVhkzLV0D7D6nSPUtfdx46IclozBCQsytjwhhuL0OA4d68SrbRf8hopVEGno7KOhs39crgY8\nlWvnZdHU1c9a7cQuMqaqW3v42TtH6BkY5vZl+czI1DSSv5qaEUdn/xB1bX1uR5FRUrEKIvtGDvWc\n7tIap4umpJMUHcYzWt8hMmYOHuvk4bXlhHsMd68sJDclxu1Icg6KJ8RhgAP12nbBX6hYBZF9dR1k\nJUWRGB3uyuOHh4Zw9exM/rSvnvbeQVcyiASyLUdb+O3Go6TGhXP3ykLS4iLcjiTnKDYilKykKA7X\nd7kdRUZJxSpItPUMUN3aywyXr8j79NwsBoa8rNld52oOkUBireX1/fU8u72GwrRY/mZZAXHaTiFg\nFKXHUt3ao20X/IS2WwgSJ64qcfJqwDO97BuO/wBIi4tg9dtH+LC1mDcuyjnHZCLBY9hreX5HDVsr\nWpmXk8Qnz5+EJ0RX/gWSwvRY3jrYSFljN9NdWiMro6cRqyBR2tBFQlSY61MDxhjmZidS0dJDc1e/\nq1lE/F3f4DC/2XCUrRWtXDw1nU/PVakKRDnJ0YR5DKWNmg70BypWQcBrLWWN3RSlxWJ8YA+bOTlJ\nGGB7VZvbUUT8VnvvIA+9W0ZZYxfXzp3EpdMm+MS/b3FeaEgI+akxlDaoWPmDURUrY8zlxpiDxphS\nY8y3T/Hxm4wxu4wxu40x7xljZjsfVc5WTWsvvYPDFKXHuh0FgISoMArTYtle2aq9WUTOQm1bLz97\nu5TWngFuuyCfebnJbkeSMVaUHkdTVz9tPQNuR5HTOG2xMsZ4gAeAK4DpwOeMMdM/cLdyYKW19jzg\n34GHnA4qZ+/E8HGhjxQrgPNzEmntGaSiucftKCJ+5VB9Jw+tLcMYw10rCn3mFyYZW0Vpx/8/H9F0\noM8bzYjVQqDUWltmrR0AngCuOfkO1tr3rLWtI+9uBLKcjSnnorShi4kJkcSO827rH2V6ZjxhHsNO\nTQeKjNrvN1Xy6IajpMaE86WVhWQkRLodScbJhPgIYiNCNR3oB0ZTrCYBVSe9Xz1y24e5HXj1XEKJ\nc7r7h6hs7vG532ojQj1MmxjP7pp2hrw64kbko3i9lv/64wH+4dndFKfH8TcrCoiP0nYKwcQYQ1F6\nLKWN3VpC4eMcXbxujLmI48XqWx/y8TuNMVuMMVsaGxudfGj5EJvKWxi21ueKFcCc7ER6B4e18Z3I\nR+gZGOIrT2znwbePcOOiHG5enEtEqMftWOKCwrRYuvuHqO/Q8Ta+bDTFqgbIPun9rJHb/oIxZhbw\nMHCNtbb5VF/IWvuQtXa+tXZ+Wlra2eSVM7T2cBOhIYY8HzzWojg9juhwDzs0HShySjVtvXzmZxtY\ns7uOf7xyKv//J2dqO4UgduIXZE0H+rbRFKvNQLExJt8YEw7cALx48h2MMTnAs8At1tpDzseUs7Wu\ntJG8lBjCPL63s4YnxHDepAT213VoR2GRD9hU3sLVP1lHVWsPj9y2gDtXFGo7hSCXEBVGWmyEFrD7\nuNP+tLXWDgFfBl4D9gNPWWv3GmPuNsbcPXK3fwFSgAeNMTuMMVvGLLGMWn1HH4fqu3xyGvCEOdmJ\nDHnt+wdEiwg8VlLBjb/YSEJUGM/fu5SLpqS7HUl8RGF6LOVN3QwNa22qrxrVZWLW2jXAmg/ctvqk\nt+8A7nA2mpyrdYebAHy6WOUkR5MUHcaO6jbm5ia5HUfEVYPDXr770l5+t7GSC6ekcf8N55OgRepy\nkuL0WDaWNVPZ0kNBmu++tgcz35sfEsesK20iJSbcpy/JNsYwOzuRIw1ddPYNuh1HxDXNXf3c9HAJ\nv9tYyV0rC/jl5xeoVMlfyU+NIcSg4218mIpVgLLWsq60iQuKUgnx8XUZc7ISscCu6na3o4i4Ym9t\nO1f/dD07q9q47/o5/MMV07RIXU4pMsxDVlI0R7SA3WepWAWoQ/VdNHb2s7wo1e0op5UeH0lmQqSu\nDpSgY63liU2VfOrB9xj2Wp6+ewmfPP+jtgkUgYLUGGraeunXRT8+ScUqQG04cnx91ZLCFJeTjM7s\n7ERq2npp6ux3O4rIuOgZGOIbT+/k28/uZmFeMi9/dRmzshLdjiV+oCAtFq+Fo83dbkeRU/CdM07E\nUZuOtjApMYrs5Gi3o4zKrKxE/rjnGDuqNWolga+0oZN7HtvG4YYuvnZJMV+9pFhTfzJqOcnReIyh\nrFHFyhepWAUgay2byltYUew/m7AmRIWRnxbDjqo2rLXar0cCkrWWJzZX8d2X9hIdHspvvrCQFZP9\n59+p+Ibw0BCyk6Moa1Kx8kWaCgxARxq7aeoaYGF+sttRzsj52Ym0dA9orZUEpPaeQe59fBv/8Oxu\n5uUm8erXlqtUyVkrSIultq2X9l5dTe1rVKwC0KbyFgAWFfjH+qoTZmQmEBpieGFHrdtRRBxVUtbM\nFfe/y5/21vPtK6by2y8uYkK8726DIr6vIC0Gy/++3ovvULEKQCXlzaTFRZCX4h/rq06IDPMwNSOO\nl3fValdhCQh9g8P8x5r93PCLjYSFhvDMly7g7pWFhGg9lZyjnKRoQkMMG46c8mhecZGKVYCx1lJS\n1sKi/GS/XKc0JzuRpq4B1pU2uR1F5JzsqWnn6p+u46F3y7hxYQ5rvrqc2dm66k+cEeoJISclmg1l\nKla+RovXA0xVSy/HOvpY5Gfrq06YPCGO+MhQXthRy4U6H03G2OMllY5/zSGvl9buQX7y5mFSYsP5\n9RcW6HtZxkRBaiyv76+npXuA5Jhwt+PICBWrAFNSfvy3l4X5/rW+6oRQTwifmDWRF3bU0jMwRHS4\nvkXFf1S39vDsthqOdfRxzZxMvnv1DBKj9QNPxkZhWgyv7x9Zw3feRLfjyAhNBQaYkvIWkqLDKPbh\ng5dP55o5k+gZGObP++rdjiIyKgNDXl7dXcfP3j5Cz8AQD986n/tvOF+lSsbUpKQoosI8mg70MRoO\nCDCbyltYkJfs14tjF+Ylk5kQyQs7arlmjo73EN9W1tjFc9traO4eYGFeMpfPzODS6RPcjiVBIDQk\nhAX5yVrA7mM0YhVA6tp7qWzp8bttFj4oJMSwak4m7x5qpLlLR9yIb+obHOb57TU8vK4cC9y+LJ9P\nnj+JyDCP29EkiCwpSOFww/GzYcU3qFgFkPf3r/LThesn+/T5WQx5rfa0Ep904FgH971+iM1HW1hW\nlMpXLy6mMM1/p9/Ff504D3ajpgN9hqYCA0hJeQtxEaFMmxjvdpRzNiUjjllZCTy1pYovLM3zy60j\nJPB09Q/xyq5adla3MyE+gpsW5Z7yPM6xuNpQ5FRmZsYTGxHKhrJmVs3OdDuOoGIVUErKmpmflxQw\nh7leNy+L77ywl721HcyclOB2HAli1lp21bTz0s5a+ge9XDI1nZVT0ggN0aC/uCvUE8LC/GQ2ap2V\nz9CrQoBo6urnSGO3326zcCpXz55EeGgIT2+pcjuKBLGOvkF+V1LJk5urSI4J596Li7hk2gSVKvEZ\nSwpSKGvq5lh7n9tRBBWrgLH5/fMB/X991QkJ0WF8fEYGz++opW9w2O04EmSsteyoauX+1w9zuL6T\nK2ZmcPfKQjJ0xp/4mBPrrDaU6cQKX6BiFSBKyluICvMwMzOwpsyum5dFe+8gr+/XnlYyfjpHRqme\n2lJNWlwEX7m4mOXFaYRorZ/4oGkT40mICtO2Cz5Ca6wCREl5C3NzEwkPDayuvLQolcyESJ7eUs1V\ns7QwU8aWtZad1W28tLOOwWEvV8zMYGlRqgqV+DRPiGFRfrI2CvURgfVTOEi19wxy4FgHiwJofdUJ\nnhDDtfOyePdwI3XtvW7HkQDW2TfIYyOjVKmx4Xz54iKNUonfWFKYQlVLL9WtPW5HCXoqVgFg89EW\nrIWFAbB/1al8Zl4W1sKz22rcjiIBandNO/e9fphDI2up7lpZSHqc1lKJ/3h/nZWmA12nYhUANh1t\nIdwTwpzsRLejjInclBgW5ifz9JYqrLVux5EAMjDk5dlt1fx+UyUpGqUSPzY5PY7kmHBNB/oAFasA\nUFLWzJzsxIA+SuOz87M52tyjFw1xzP66Dh54q5StFa2snJzGXSs0SiX+KyTEsLjg+H5W+gXUXSpW\nfq6rf4g9tR0Btc3CqVw1ayKJ0WH8dkOF21HEz1lreXTDUa55YD19g8N8YWk+H5+RETAb60rwWlKQ\nQm17H5UtWmflJl0V6Oe2VrQy7LUBu77qhMgwD9fPz+bhdeXUtfcyMSHK7Ujih1q7B/j7Z3bx5331\nXDQljSVsDUT8AAAgAElEQVSFqcRG6GVQAsOJdVbvHWkmNyXG5TTBSyNWfm5TeTOeEMPcnCS3o4y5\nmxfn4rVW57DJWdlY1swV96/l7YMNfOeq6fzy8wtUqiSgFKbFkhYXoQXsLlOx8nObyls4b1ICMUHw\nAyI7OZqLp6Tz+02V9A9pJ3YZHa/X8pM3DnPjLzYSFe7huXuWcvuyfEI09ScBxhjDkoIUNpRpnZWb\nVKz8WN/gMDur2lkU4NOAJ7tlSS5NXQP8cc8xt6OIH+jqH+Kex7bxgz8fYtXsTF76yjId6C0BbUlh\nCo2dx8+OFXeoWPmx7ZVtDAx7A37h+slWFKeRlxLNo1rELqdR0dzNpx9cz5/2HeOfPzGN+66fo6k/\nCXhLCk6cG6jpQLfoVcaPlZQ3YwzMyw2eYhUSYrh5cS7fe2U/e2raNfoQJM50Xd3h+k6e2FwFwG0X\n5BMdHsrvN1WNRTQRn5KbEs3EhEg2HmnmlsW5bscJShqx8mObyluYlnH88M1gct28bKLCPNp6Qf6K\ntZa1hxv59XtHSYgK496LiihKj3U7lsi4ObHOaqPWWblGxcpPDQx52VbZGlTTgCckRIfxyfMzeX5H\nDa3dA27HER8xMOTlqS1VvLrnGDMy47lrZQHJMeFuxxIZd4sLU2juHuBQfZfbUYKSipWf2l3TRt+g\nN6gWrp/sC0vz6R/y8uv3jrodRXxAa88AD717hF3V7Xxs+gQ+tzCHiNDAPYlA5KNc8P5+Vk0uJwlO\nKlZ+qqS8BYAFecFZrCZPiOOy6RP49XtH6eofcjuOuKisqYsH3iqluXuAW5bkcuGUdIzO+pMglpUU\nTXZylPazcomKlZ8qKWuhOD2WlNgIt6O45t6LimjvHeSxjVprFYystWw40sQj68qJCQ/lnguLmJoR\n73YsEZ+wpCCFkvIWvF6tsxpvKlZ+aGjYy9aK4FxfdbI52YksK0rlF2vL6RvUhqHBZGjYy7Pba3hp\nVx2TJ8TxpQsLSYsL3l8yRD5oSWEK7b2D7KvrcDtK0FGx8kP76jro6h9iYX6K21Fcd+9FRTR19fP0\nFl1KHyw6egf5xdoytla0ctGUdG5enEtkmNZTiZxsSUEqcPwoJxlfKlZ+aNPI+qpgXbh+ssUFyczN\nSWT1O2UMDnvdjiNjrLK5mwfeKqW+o58bF+Zw2fQJhGg9lchfyUiIJD81RuusXKBi5YdKylvIS4lm\nQnyk21FcZ4zhyxcXUdPWyws7at2OI2Noy9EWfrGunLDQEO6+sFCbw4qcxuKCFDaVtzCkXzrHlYqV\nn/F6LZuPtrBQo1Xvu2hKOtMmxvPg26UMa6FmwBkc9vLCjhqe3V5DQWoM91xYSIZ+qRA5rSWFKXT2\nD7G3VuusxpOKlZ851NBJW88gi7S+6n3GGL5ycRFljd08u63a7TjioKaufm56uISS8haWF6dy65I8\nosN1EpfIaJw4N/A9TQeOKxUrP1NSdnx9lUas/tIVMzM4PyeR/37tID0D2tcqEOyubufqn6xjZ1Ub\nn52fzRUzJ+IJ0XoqkdFKi4ugOD1WBzKPMxUrP7OpvIXMhEiykqLcjuJTjDH88yem09DZz8/fKXM7\njpyjZ7dV85nV72GM4ZkvXcCc7ES3I4n4pSWFKWw52qKLe8aRipUfsdZSUt7CooIU7Sx9CvNyk7hq\n1kR+/u4RjrX3uR1HzkL/0DD/9Nxu/u6pnZyfk8gLX16qReoi52BJQQo9A8Psqm5zO0rQULHyI2VN\n3TR19Wsa8CN86/KpeL3w368ddDuKnKGqlh6uW72Bx0oquXtlIb+7fRGpQXyygIgTFo2ss9K2C+NH\nxcqPaP+q08tOjuYLy/J4Zls1u6vb3Y4jo/TWwQZW/XQd5U3dPHTLPL59xVRCPXp5EjlXyTHhTJsY\nz/pSFavxolcuP1JS1kxqbAT5qTFuR/Fp915URHJMON97ZR/WavsFXzbstfzwTwf54q83MzEhipe/\nsoyPzchwO5ZIQFlRnMqWihZd2DNOVKz8xPvrq/KTtb7qNOIjw/i7yyZTUt7CH7Zq+wVf1dI9wG2/\n2sSP3yzl2rlZPHfPBeSm6JcGEactL05jcNi+f1W5jC0VKz9R3dpLXXtf0B+8PFo3LsxhYV4y/+el\nfdS29bodRz5ga0UrV/14LSXlLXz/0+fx35+ZpfP+RMbI/LwkIkJDePdwo9tRgoKKlZ84sfBQG4OO\nTkiI4b+vm8WwtXzrmV2aEvQRQ8Ne7n/9MJ/9+QY8HsOzX7qAGxbmaBRWZAxFhnlYVJDC2sNNbkcJ\nCipWfmL9kSZSYyOYPCHW7Sh+Izclhn+4chprDzfxWEml23GCXlVLDzc8tJEfvX6IVbMm8spXl2sr\nBZFxsqI4ldKGLo3gjwMVKz9grWV9aTNLi7R/1Zm6eVEOy4pS+Y81+6ls7nE7TlCy1vLstmquvH8t\nB451ct/1c7jvhvOJjwxzO5pI0FgxOQ2AtZoOHHMqVn7gUH0XTV39LC1MdTuK3zHG8J+fmYXHGL75\nh506pHmcNXT08TePbuHvntrJlIw4Xv3acj55/iS3Y4kEneL0WCbER/CupgPHnIqVH1hXevwfwtJi\nFauzMSkxin9ZNZ1N5S385x8PuB0nKFhreX57DZf96F3WHm7inz8xjSfvWkJ2crTb0USCkjGG5cVp\nrC9t0i+YY2xUxcoYc7kx5qAxptQY8+1TfHyqMWaDMabfGPNN52MGt/dKm8hLiWZSos4HPFvXzc/m\n5sU5PPRuGU9vqXI7TkCraunh9t9s4etP7qAwLYY1X1vOHcsLdICyiMuWF6fS1jPInhptnjyWQk93\nB2OMB3gAuAyoBjYbY1601u476W4twFeBT45JyiA2OOxlY1mzpk8c8K+rZlDe1M0/PrebvNQYFuRp\n6wonDQ57+crj23njQD0Gw5UzM7igKJWSshbtnyPiA5YVHZ/1WHu4kdk62HzMjGbEaiFQaq0ts9YO\nAE8A15x8B2ttg7V2MzA4BhmD2q7qNroHhllapGnAcxXmCeHBG+eRlRTNXb/dSlWLFrM7ZfPRFlb9\nZB1/3HuMovQ4vn5pMcuK0wjRxRYiPiMlNoKZk+J595DWWY2l0RSrScDJcyfVI7fJOFh3uBljjp9Q\nLucuITqMhz8/n6FhL3f8ZgttPQNuR/JrVS093Pv4Nq5bvYH23kFuXpTDLYtzSYwOdzuaiJzCiuI0\ntlW20tmncZCxctqpQCcZY+4E7gTIyckZz4f2W+uPNDEjM56kmOD5QfX4GO05deOi499zhWmxPHjT\nPL74683c8NBGfnfHIlJjI8bkMQNVd/8QP3v7CA+tLSPEwNcuKeaulQU8v73W7Wgi8hGWF6fx4NtH\n2FjWwmXTJ7gdJyCNZsSqBsg+6f2skdvOmLX2IWvtfGvt/LS0tLP5EkGlZ2CI7ZWtmgYcA8uKU/nl\nbfM52tzNZ3++gWPtfW5H8gt9g8P8cl05K/7rLX76VilXzMzgzW9cyN9eNpno8HH9PU1EzsLc3ESi\nwz28e0j7WY2V0RSrzUCxMSbfGBMO3AC8OLaxBGBTeQuDw1b7V42R5cVpPPrFRTR09HPdz9/TmquP\nMDTs5cnNlVz8P2/z7y/vY+rEOJ675wLuv+F8MnW1qojfiAj1cEFhKm8eaNBRX2PktMXKWjsEfBl4\nDdgPPGWt3WuMudsYczeAMSbDGFMN/B3wz8aYamNM/FgGDwbrS5sI94To6rUxtDA/mcfuWERH7xDX\nrd7A9spWtyP5lL7BYX63sYKLfvA233pmN+nxkTx+xyIeu2Mx5+ckuR1PRM7CpdPSqWnr5cCxTrej\nBKRRjd1ba9cAaz5w2+qT3j7G8SlCcdD60mbm5iYSFe5xO0pAm52dyJN3LeaO32zhutUb+PYVU7l9\nWX5QHx/U2TfI4yWVPLyunMbOfuZkJ/KvV83gkmnpQf28iASCi6emA/DG/nqmTdQYiNO0KMJHNXf1\ns6+ug29+bLLbUYLC1Ix4Xvnqcv7+Dzv53iv72VjWwg+um01CdHCdZ3eksYtH3zvKH7ZW0z0wzLKi\nVO6/YQ5LCnROpUigSI+PZHZWAq/vb+DLFxe7HSfgqFj5qPePsdHC9XGTEBXG6pvn8av1R/m/r+7n\nyh+v5TtXTePjMzICrlScfOXlkNfLwWOdbCpv4XBDF54Qw6xJCVxQmMqkpCiONvVwtEnrz0QCyaXT\nJvDD1w/R2NlPWpyuinaSipWPevNAAykx4czK0u6448kYwxeX5TM3N4lv/WEXd/9uG4sLkvmXq2Yw\nPTOwhszr2nvZVtHK9qo2egaGiY8M5dJpE1iYn0xshF4aRALZJdMm8IM/H+KtAw18dkH26T9BRk2v\nnj5oaNjL2wcbuXTaBJ2v5pI52Ym88tVl/H5TJT/48yGu+slarl+QzZ0rCslPjXE73lk7XN/JK7vr\n+P2mSuo7+vEYw7SJcczLTaIoPU7fbyJBYtrEODITIvnz/noVK4epWPmgbZVttPcOcsm0dLejBLVQ\nTwi3LMlj1exM7nv9MI+VVPDE5ioumpLOF5bmsawo1eenCAeHvWyraOXtQ428vq+eww1dGAO5ydGs\nmjWR2VmJRGt0SiToGGO4ZNoE/rC1mr7BYSLDdJGUU/SK6oPeOFBPaIhhebHWV/mCxOhw/u3qGdxz\nYSG/K6nk8ZIKbvnlJgrTYvjEeRP52IwMZmTG+0TJGvZaDh7rZEtFC++VNrO+tInO/iE8IYb5uUl8\n9+oZXD4zgzf2N7gdVURcdun0Cfx2YwUbjjRz0VT9Iu8UFSsf9Ob+BhYVJBMXGVxXpPm69PhI/u6y\nydx7USEv76zjyS1V/PStUn78ZilZSVFcOm0CC/KSOT8nkYkJkWNetKy1VLf2sre2nX21HeyqaWdr\nRSudfUMAZCZE8olZE7lwShoXFKUSr+8nETnJ4oJkYsI9vL6/XsXKQSpWPqaqpYfDDV1crzlvnxUR\n6uHaeVlcOy+L5q5+Xt9fz2t76/n9pkp+/d5RACbERzArK5GCtBjyUmLITYkmOymapJhwYsI9oypd\n1lraegZp6uqnsbOfYx19HG3uoaK5m6PNPZQ1dr1fokIMFKXHsmp2Jgvykpifm0xWUpRPjKKJiG+K\nCPWwvDiNN/Y38L1PWr1eOETFyse8eeD4FM0l03Q4ptPG6nBngEduW8DAkJcDxzrev9JuT0077xxs\nZGDY+xf3DfMYEqLCiY8MxRNi8IQYQkZe0PqGhukdGKZnYJju/iGGvH955ESIgczEKPJSYrhmTibT\nJyYwIzOeKRlxWiMhImfskmnp/HHvMfbWdjBzUoLbcQKCipWPeeNAAwWpMX595VmwCg8NYVZWIrOy\nErlt5LZhr6WuvZeK5h5qWntp7RmgrXeQtp5BOvsGGfZahr0W78iZXZFhHqLCPESHe4iJCCU1NoK0\nuAhSYyNIj48gKymKiFAVKBFxxsVT0zEGXt9fr2LlEBUrH9LdP8TGI83cuiTX7SjiEE+IISspmqyk\naLejiIj8lZTYCObnJvHq7mN8/VKd9OEEFSsfsq60iYFhLxdrmwW/M5bTjCIiY2nV7Ez+5YW9HDzW\nyZSMOLfj+L0QtwPI/3rrQANxEaEsyEt2O4qIiASJK2ZOJMTAy7tq3Y4SEFSsfITXa3nzQAMrJqcR\n5tH/FhERGR9pcRFcUJjKSztrsdae/hPkI+knuI/YXdNOQ2c/F2svERERGWerZk/kaHMPu2va3Y7i\n91SsfMQru+sI8xgdYyMiIuPu8hkTCfMYXtqp6cBzpWLlA7xey0s7a1lRnEZidLjbcUREJMgkRIex\ncnIaL++qw+vVdOC5ULHyAVsqWqlr72PV7Ey3o4iISJBaNTuTuvY+tla2uh3Fr6lY+YCXdtYSGRbC\nZdO127qIiLjj0mkTiAwL0XTgOVKxctnQsJc1u+u4ZNoEYiK0rZiIiLgjJiKUS6ZOYM3uOoY+cBSX\njJ6KlcveO9JMc/cAq2ZpGlBERNy1avZEmroG2FDW7HYUv6Vi5bIXd9YSFxHKhVPS3I4iIiJB7sIp\n6cRGhPL8dk0Hni0VKxf1DQ7z2p5jfGxGBpFhOlhXRETcFRnmYdXsTF7ZXUt7z6DbcfySipWL3jnU\nSGf/EFfP0TSgiIj4hpsW5dA36OXZ7dVuR/FLKlYuenFnLckx4SwtTHE7ioiICAAzJyUwOzuRx0oq\ndcTNWVCxckl3/xBv7K/nyvMyCNXZgCIi4kNuWpRDaUMXm8pb3I7id/QT3SUv76qlb9DLNXMmuR1F\nRETkL6yalUl8ZCiPlVS6HcXvqFi5wFrLb96rYMqEOObnJrkdR0RE5C9EhXu4dl4Wr+6po6mr3+04\nfkXFygXbKlvZV9fBrRfkYoxxO46IiMhfuWlRDoPDlqe3aBH7mVCxcsFv3qsgLjKUT2oaUEREfFRR\nehyL8pN5fFOFDmY+AypW46yhs49X99Rx3bxsHWEjIiI+7ebFuVS19LK2tMntKH5DxWqcPbGpisFh\nyy1Lct2OIiIi8pE+PiOD1NhwHllX7nYUv6FiNY4Gh708VlLBislp5KfGuB1HRETkI4WHhvDFZfm8\nc6iRHVVtbsfxCypW4+hPe+up7+jn8xqtEhERP3HrkjwSo8P48RuH3Y7iF1SsxtGjG46SnRzFhVPS\n3Y4iIiIyKrERofzN8gLePNDATo1anZaK1TjZW9tOSXkLtyzOxROiLRZERMR/3Lokl4QojVqNhorV\nOPmf1w4SHxnK9fNz3I4iIiJyRuIiw7hjWT5vHGhgd3W723F8morVOCgpa+atg4186cIiEqLD3I4j\nIiJyxj6/NI+EqDDuf+OQ21F8morVGLPW8l+vHWRCfAS3XZDndhwREZGzEh8Zxu3L8nl9fwN7ajRq\n9WFUrMbY6/sb2FrRytcumUxUuMftOCIiImfttqV5xEeG8v1XD2CtdmM/FRWrMTTstfz3awfIT43h\nuvlZbscRERE5J/GRYXzjY1NYV9rECztq3Y7jk1SsxtDz22s4VN/FNz42mTCPnmoREfF/Ny/OZU52\nIv/+8j7aegbcjuNz9NN+jPQPDfPDPx/ivEkJXDlzottxREREHOEJMfzfT59HW+8g/7Fmv9txfI6K\n1Ri57/XD1LT18q3LpxKifatERCSATJsYzx3L83lqSzUby5rdjuNTVKzGwOajLax+5wjXz89mWXGq\n23FEREQc9/VLJpOdHMU/Preb/qFht+P4DBUrh3X2DfK3T+4gOyma76ya7nYcERGRMREV7uF7nzyP\nssZu7ntdO7KfoGLlsP/z0j5q23r50fWziY0IdTuOiIjImFk5OY0bFmTzs7eP8MquOrfj+AQVKwf9\ncc8xnt5azT0XFjEvN9ntOCIiImPuu9fMYF5uEt94eoc2DkXFyjE1bb3843O7mTkpnq9eUux2HBER\nkXEREeph9c3zSIoO585Ht9DY2e92JFepWDmgobOPmx8uYXDYy33XzyE8VE+riIgEj7S4CH5x63xa\nega4+3dbg3oxuxrAOWrrGeDWX26ivqOPX39hIUXpcW5HEhERGXczJyXwg+vmsLWilb99ckfQlisV\nq3PQ2TfI5x/ZRFlTN7+4dT7zcpPcjiQiIuKaT8yayD9/Yhprdh/jtkc209E36HakcadidZY6+wa5\n4zdb2FPbwYM3zmVpkfarEhERuWN5AfddP4fNR1v47OoN1Hf0uR1pXKlYnYU9Ne2s+sk6Nh9t4Yef\nnc2l0ye4HUlERMRnfPL8STxy2wKqWnr49IPvcai+0+1I40bF6gxYa/ntxgo+/eB79A16eeLOJVwz\nZ5LbsURERHzOislpPHHnEvqHhrnqx+v46ZuHGRjyuh1rzKlYjVJ9Rx9ffnw733l+DxcUpbDma8tZ\nmK+9qkRERD7MeVkJrPnaci6bPoH/+dMhrv7pOnZUtbkda0xpa/DTaOrqZ/XbR/jtxgqGvZZvXT6V\nu1YU6GBlERGRUUiPi+SBm+Zyzd5jfOeFPXz6wfVcOzeL25fnMzUj3u14jlOx+hBljV08taWaRzcc\npW9wmE/PzeKrFxeTkxLtdjQRERG/87EZGSwuTOGHfzrEE5sreXprNcuKUrl9WT4rJ6cFzIDFqIqV\nMeZy4H7AAzxsrf3+Bz5uRj5+JdAD3Gat3eZw1jFlreVocw9rdtfxyq469tV1YAysmpXJ1y4tpjAt\n1u2IIiIifi0+Mox/u3oGX7ukmMc3VfLohqN84debSY+L4KIp6Vw0NZ1lxal+fdbuaZMbYzzAA8Bl\nQDWw2RjzorV230l3uwIoHvmzCPjZyH99Ut/gMLVtvVS09LCnup2d1W3sqGqnqev4NvxzcxL5zlXT\nufK8DCYmRLmcVkREJLAkxYRz70VF/M3yAv649xiv7TnGmt11PLmlijCPYUZmAtMmxjN9YhzTM+PJ\nTYkhOTrcL0a1RlMJFwKl1toyAGPME8A1wMnF6hrgUWutBTYaYxKNMROtta4ddV3b1ssv15XT2TdI\nV/8QnX1DdPQOUtve9xfnGBkDhWmxrJycxpzsBC6eNoFJiSpTIiIiYy08NISrZ2dy9exMBoe9bK1o\n5a2DDeysamPN7jp+v6ny/fuGeQzpcZFMiI8gKTqc6IhQYsI9RIeHsjA/mctnZrj4N/lfoylWk4Cq\nk96v5q9Ho051n0mAa8Wqs2+IJzdXERsRSlxkKLGRoSREhzM1I55JSVFMSowiKymKaZnxxEeGuRVT\nREREgDBPCIsLUlhckAIcX6JT197H/roOqlp6ONbRT31HH8fa+zjW0UfPwDDd/UP0DgxjsX5VrBxj\njLkTuHPk3S5jzMHxfPwglgo0uR3CT+i5Gj09V2dGz9fo6bkapZvcDuAj9gD/NvYPkzuaO42mWNUA\n2Se9nzVy25neB2vtQ8BDowkmzjHGbLHWznc7hz/QczV6eq7OjJ6v0dNzJf5sNBuEbgaKjTH5xphw\n4AbgxQ/c50XgVnPcYqDdzfVVIiIiIm447YiVtXbIGPNl4DWOb7fwiLV2rzHm7pGPrwbWcHyrhVKO\nb7fwhbGLLCIiIuKbRrXGylq7huPl6eTbVp/0tgXudTaaOEjTr6On52r09FydGT1fo6fnSvyWOd6J\nRERERORc6RBmEREREYeoWAUwY8zlxpiDxphSY8y33c7jy4wxjxhjGowxe9zO4uuMMdnGmLeMMfuM\nMXuNMV9zO5OvMsZEGmM2GWN2jjxX33U7k68zxniMMduNMS+7nUXkbKhYBaiTjiK6ApgOfM4YM93d\nVD7t18DlbofwE0PAN6y104HFwL363vpQ/cDF1trZwBzg8pErp+XDfQ3Y73YIkbOlYhW43j+KyFo7\nAJw4ikhOwVr7LtDidg5/YK2tO3HIurW2k+M/BCe5m8o32eO6Rt4NG/mjha0fwhiTBXwCeNjtLCJn\nS8UqcH3YMUMijjHG5AHnAyXuJvFdI1NbO4AG4M/WWj1XH+4+4O8Br9tBRM6WipWInBVjTCzwDPB1\na22H23l8lbV22Fo7h+MnUiw0xsx0O5MvMsZcBTRYa7e6nUXkXKhYBa5RHTMkcjaMMWEcL1WPWWuf\ndTuPP7DWtgFvobV8H2YpcLUx5ijHly5cbIz5nbuRRM6cilXgGs1RRCJnzBhjgF8C+621P3Q7jy8z\nxqQZYxJH3o4CLgMOuJvKN1lr/8Fam2WtzeP469Wb1tqbXY4lcsZUrAKUtXYIOHEU0X7gKWvtXndT\n+S5jzO+BDcAUY0y1MeZ2tzP5sKXALRwfUdgx8udKt0P5qInAW8aYXRz/ZefP1lptIyASwLTzuoiI\niIhDNGIlIiIi4hAVKxERERGHqFiJiIiIOETFSkRERMQhKlYiIiIiDlGxEhEREXGIipWInJYxZnhk\nv6q9xpidxphvGGNCRj423xjz44/43DxjzI3jl/avHrt35Kw+n2CMud4YU2qM0X5WIgFIxUpERqPX\nWjvHWjuD47uHXwH8K4C1dou19qsf8bl5gCvFasSRkbP6Rs0Y4xmrMNbaJ4E7xurri4i7VKxE5IxY\naxuAO4Evm+MuPDH6YoxZedJu7NuNMXHA94HlI7f97cgo0lpjzLaRPxeMfO6Fxpi3jTF/MMYcMMY8\nNnJ8DsaYBcaY90ZGyzYZY+KMMR5jzH8bYzYbY3YZY+4aTX5jzPPGmK0jo293nnR7lzHmB8aYncCS\nD3nMGSNv7xh5zOKRz735pNt/fqKYGWMuH/k77jTGvOHg/wYR8VGhbgcQEf9jrS0bKQ/pH/jQN4F7\nrbXrjTGxQB/wbeCb1tqrAIwx0cBl1tq+kWLye2D+yOefD8wAaoH1wFJjzCbgSeB6a+1mY0w80Avc\nDrRbaxcYYyKA9caYP1lry08T/4vW2paRs/s2G2OesdY2AzFAibX2GyPnax44xWPeDdxvrX1s5D4e\nY8w04HpgqbV20BjzIHCTMeZV4BfACmttuTEm+YyfaBHxOypWIuKk9cAPjTGPAc9aa6tHBp1OFgb8\n1BgzBxgGJp/0sU3W2mqAkXVReUA7UGet3Qxgre0Y+fjHgFnGmM+MfG4CUAycrlh91RjzqZG3s0c+\np3kkyzMjt0/5kMfcAPyTMSZr5O932BhzCTCP4yUNIApoABYD754oetbaltPkEpEAoGIlImfMGFPA\n8SLSAEw7cbu19vvGmFeAKzk+gvTxU3z63wL1wGyOL0foO+lj/Se9PcxHv0YZ4CvW2tfOIPeFwKXA\nEmttjzHmbSBy5MN91trhj/p8a+3jxpgS4BPAmpHpR/P/2rtj1qiCKAzD7wemEAkLgoKVihBSBDtb\nwR8gWIhWsTadrZBasLGIIhYWirWCIBgF+wXBRkRsrEWLFEEEY3JS3FF0EXcDFyKX96mWYdgz2509\n8+1d4GFVXZ+odX7Wc0kaDjNWkvYkyRHgHnCnJv7FPcmpqnpbVTeB18AisAnM/7ZtRDcN2gGWgWlB\n8Q/AsSRnWo35JAeAF8BKkrm2vpDk0JT3GgEbralapJsqzVyzNZQfq2oNeAqcBl4BF5McbXsPJzkO\njLoVGoMAAADcSURBVIGzSU7+XJ9yNkkD4MRK0iwOtqu5OeAH8Ai49Zd915KcA3aAd8Dz9nq7hcIf\nAHeBx0muAOvA138VrqrvSS4Dt1su6hvd1Ok+3VXhmxZy/wJcmPI51oGrSd7TNU/jPda8BCwn2QI+\nATdaXmsVeJnuERRbdDmzcQvHP2nrn+l+USlpwDLxhVOSBiPJCeBZVS3t81H+0K4kfwX6JQ2HV4GS\nhmwbGOU/e0Ao3dRuY7/PIql/TqwkSZJ64sRKkiSpJzZWkiRJPbGxkiRJ6omNlSRJUk9srCRJknqy\nC9V0cDrPww1FAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(servs['servs_ra'], servs['servs_dec'])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Given the graph above, we use 1 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, servs, \"servs_ra\", \"servs_dec\", radius=1.*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add SWIRE" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAF3CAYAAABnvQURAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VOeZNvD7mdGMeu+9IQECRBO92hgbAwbbwTbuTtyI\n7dipX5L9djfJ7madZJPY8RoXXOJuEndsYzCYakSR6AgQqPfeuzTzfn9I+JMxZYAjnSn377q4Is2M\nNLcnMLp1znueV5RSICIiIqIrZ9A7ABEREZGzYLEiIiIi0giLFREREZFGWKyIiIiINMJiRURERKQR\nFisiIiIijbBYEREREWmExYqIiIhIIyxWRERERBphsSIiIiLSiJteTxwSEqISEhL0enoiIiIim+3f\nv79OKRV6scfpVqwSEhKQnZ2t19MTERER2UxEim15HE8FEhEREWmExYqIiIhIIyxWRERERBphsSIi\nIiLSCIsVERERkUZYrIiIiIg0wmJFREREpBEWKyIiIiKNsFgRERERaYTFioiIiEgjLFZEREREGmGx\nIiIiItIIixURERGRRtz0DkCO4Z29JXpHOKc7psXpHYGIiOgbPGJFREREpBEWKyIiIiKNsFgRERER\naYTFioiIiEgjLFZEREREGmGxIiIiItKITcVKRBaJSK6I5InIr85x/3wRaRaRQwN//l37qERERET2\n7aJzrETECGA1gIUAygBkicg6pdTxsx66Uym1dAgyEhERETkEW45YTQWQp5QqUEr1AFgLYPnQxiIi\nIiJyPLYUq2gApYM+Lxu47WwzReSIiHwhImM0SUdERETkQLTa0uYAgDilVJuILAbwMYCUsx8kIg8B\neAgA4uK4FQkRERE5F1uOWJUDiB30eczAbd9QSrUopdoGPl4PwCQiIWd/I6XUGqVUhlIqIzQ09Api\nExEREdkfW4pVFoAUEUkUETOAlQDWDX6AiESIiAx8PHXg+9ZrHZaIiIjInl30VKBSqk9EHgOwEYAR\nwKtKqRwRWTVw/wsAVgD4oYj0AegEsFIppYYwNxEREZHdsWmN1cDpvfVn3fbCoI+fBfCsttGIiIiI\nHAsnrxMRERFphMWKiIiISCMsVkREREQaYbEiIiIi0giLFREREZFGWKyIiIiINMJiRURERKQRFisi\nIiIijbBYEREREWmExYqIiIhIIyxWRERERBphsSIiIiLSCIsVERERkUZYrIiIiIg0wmJFREREpBEW\nKyIiIiKNsFgRERERaYTFioiIiEgjLFZEREREGmGxIiIiItIIixURERGRRlisiIiIiDTCYkVERESk\nERYrIiIiIo2wWBERERFphMWKiIiISCMsVkREREQaYbEiIiIi0giLFREREZFGWKyIiIiINMJiRURE\nRKQRFisiIiIijbBYEREREWmExYqIiIhIIyxWRERERBphsSIiIiLSCIsVERERkUZYrIiIiIg0wmJF\nREREpBEWKyIiIiKNsFgRERERaYTFioiIiEgjLFZEREREGmGxIiIiItIIixURERGRRlisiIiIiDTC\nYkVERESkERYrIiIiIo2wWBERERFphMWKiIiISCMsVkREREQasalYicgiEckVkTwR+dUFHjdFRPpE\nZIV2EYmIiIgcw0WLlYgYAawGcD2ANAC3i0jaeR73RwBfah2SiIiIyBHYcsRqKoA8pVSBUqoHwFoA\ny8/xuB8B+ABAjYb5iIiIiByGLcUqGkDpoM/LBm77hohEA7gJwPPaRSMiIiJyLFotXn8awC+VUtYL\nPUhEHhKRbBHJrq2t1eipiYiIiOyDmw2PKQcQO+jzmIHbBssAsFZEACAEwGIR6VNKfTz4QUqpNQDW\nAEBGRoa63NBERERE9siWYpUFIEVEEtFfqFYCuGPwA5RSiWc+FpHXAHx2dqkiIiIicnYXLVZKqT4R\neQzARgBGAK8qpXJEZNXA/S8McUYiIiIih2DLESsopdYDWH/WbecsVEqp+648FhEREZHj4eR1IiIi\nIo2wWBERERFphMWKiIiISCMsVkREREQaYbEiIiIi0giLFREREZFGWKyIiIiINMJiRURERKQRFisi\nIiIijbBYEREREWmExYqIiIhIIyxWRERERBphsSIiIiLSCIsVERERkUZYrIiIiIg0wmJFREREpBEW\nKyIiIiKNsFgRERERaYTFioiIiEgjLFZEREREGmGxIiIiItIIixURERGRRlisiIiIiDTCYkVERESk\nERYrIiIiIo2wWBERERFphMWKiIiISCMsVkREREQaYbEiIiIi0giLFREREZFGWKyIiIiINMJiRURE\nRKQRN70DEBERDbV39pboHeGc7pgWp3cE0hiPWBERERFphMWKiIiISCMsVkREREQaYbEiIiIi0giL\nFREREZFGWKyIiIiINMJiRURERKQRFisiIiIijbBYEREREWmExYqIiIhIIyxWRERERBphsSIiIiLS\nCIsVERERkUZYrIiIiIg0wmJFREREpBEWKyIiIiKNsFgRERERaYTFioiIiEgjNhUrEVkkIrkikici\nvzrH/ctF5IiIHBKRbBGZrX1UIiIiIvvmdrEHiIgRwGoACwGUAcgSkXVKqeODHvYVgHVKKSUi6QD+\nCWDUUAQmIiIisle2HLGaCiBPKVWglOoBsBbA8sEPUEq1KaXUwKfeABSIiIiIXIwtxSoaQOmgz8sG\nbvsWEblJRE4C+BzAD7SJR0REROQ4NFu8rpT6SCk1CsCNAP7zXI8RkYcG1mBl19bWavXURERERHbB\nlmJVDiB20OcxA7edk1JqB4AkEQk5x31rlFIZSqmM0NDQSw5LREREZM9sKVZZAFJEJFFEzABWAlg3\n+AEiMkJEZODjSQDcAdRrHZaIiIjInl30qkClVJ+IPAZgIwAjgFeVUjkismrg/hcAfA/APSLSC6AT\nwG2DFrMTERERuYSLFisAUEqtB7D+rNteGPTxHwH8UdtoRERERI6Fk9eJiIiINMJiRURERKQRFisi\nIiIijbBYkeaUUqho6sSh0iZ09lj0jkNERDRsbFq8TnQxVqWQU9GC3KpWnK5uRWt3HwDA3c2AKQlB\nmJkcjAAvs84piYiIhhaLFV0xq1J4L7sUh8ua4WkyYkSYD1LDfRHkbca+wnpk5tchM78O42MCsGxC\nFNzdjHpHJiIiGhIsVnRFrErhwwNlOFzWjIVp4ZibEgqjQb65PzHEG9eO6UFmXh12F9Sjo8eCu6bH\nf+sxREREzoJrrOiyWZXCxwfLcaCkCQtGh+GqkWHnLEyBXmYsSY/CDeOjkFvdik+PVIDzY4mIyBnx\niBVdFqUUPj1cgeziRswfGYqrR4Zd9GumJQajsb0XO07XIsjLjLmp3C+SiIicC4sVXZbsokbsLWzA\nnJQQLBwdjoGtIi/q2jHhaOzowYacKgR4mZAeEzDESYmIiIYPTwXSJevssWDj8SokBHtj0ZgIm0sV\nABhEsGJyDOKDvfD+/jLUtHQNYVIiIqLhxWJFl2zLyWp09liwND3ykkrVGSajAXdOi4ebUfDFsaoh\nSEhERKQPngqkS1LT0oXdBfXISAhCVIDnZX8fH3c3XDUyDF8cq8Kp6lakhvtqmJKInJlSClUtXcir\nafvmT3NnL0xGA9wMAjejAZH+HshICMSE2AB4mfmjjoYP/7aRzZRS+PxoJcxuBixMC7/i7zcjKRh7\nCxuw/mglkkN9OIKBiM6ru8+C3fn12HS8GptPVKO6pfub+/w9TQj2MaPPotBrsaLXolDf3g2lADeD\nYEy0P0J93DEjKRieZs7Ro6HFYkU2y61qxemaNiwZFwkf9yv/q+NmNOD6sRF4e28JsooaMD0pWIOU\nRORMjpQ14fXMYmzMqUJbdx+8zEbMTQnFrBHBGBHmixFhPgjxMX9nWUJzZy8OlDQiu6gBewsasPlE\nNXaersW0xGDMTgnR5D2M6Fz4N4ts0me14vOjlQj1cde0AKVF+iExxBubT1RjfEwAf5skIvT0WfHF\nsUq8llmEgyVN8DYbsTQ9CteNDcfM5BB4mC7+PuHvacJVI/vn6wHAX77MxbbcWuw8XYvM/DrMTgnB\nglHhPFJOmmOxIpscLG5CfXsP7p2RoOkbkYhgybhIrN6ah625NVg8LlKz701EjqXPYsUHB8rwzFd5\nKG/qRGKIN35zQxpWTI6Br4fpir53pL8nbp8ah9rWbmzNrcG23FoU1rZj5dQ4+Hte2fcmGozFii5K\nKYXdBfWI9PdAariP5t8/KsATk+ICsTu/HjOSgxHIzZqJXIrVqvDZ0Uo8tekUCuvaMT7GH/954xjM\nTw2DQeMjSqG+7rg1IxYjw33x0aFy/O+W07g1I5YX0JBmWKzoovYWNqCqpQs3T4y+rPEKtlgwOgwH\nSxuxO7+eR62IHNg7e0su6fHF9e349EgFKpq6EO7njrumxWN0pC+qmruxNqt0iFIC42MDEBXgiXf3\nleC1zCIsTAv/5rQh0ZVgsaKLej2zCJ4mI8bHDt2U9AAvM8ZE+SOrqAELRoXB3YY1FETkuFq6erHx\nWBUOljbBz8MNt2bEID0mAIYh+uXtXEJ93bFqXjI+PlSOTcerIQDms1zRFWKxoguqaOrEl8erMSs5\nGCbj0M6TnT0iBEfLm7G/pBEzk0OG9LmISB9WpbA7vx6bT1Sjz6owLzUU80eGwt1Nn1+mzG4GrJgc\nA6UUvjxeDbObge8/dEVYrOiC3tpTDKUUpg3DKITYIC/EBXkhM78e05OCh/U3VyIaelUtXfjwQBnK\nGjuRGu6DpelRCPFx1zvWwFZbsei1KHx2pBJmowEZCUF6xyIHxS1t6Ly6ei1Ym1WKa0aHD9uC8lkj\nQtDQ3oOTlS3D8nxENPT6LFZsPlGN1Vvy0NDeg9syYnHvjAS7KFVnGA2ClVNikRLmg48OluNIWZPe\nkchBsVjReX16uAIN7T24b2bCsD1nWqQfArxM+Dqvftiek4iGTmVzJ1Zvy8OWkzUYG+2HH1+TivGx\nAUN2IcyVcBvYxzQuyAsfHChDNTeJp8vAYkXnpJTC67uLkBrugxnJwzcR3WgQzEgKRlF9O8qbOoft\neYlIW1alsD23Bs9tzUd7twX3TI/HbVPi7H7iudnNgNunxcFsNODdfSXo6bPqHYkcDIsVndPB0iYc\nK2/BPTMShv03yykJQTC7GbArr25Yn5eItFHf1o01Owqw8Xg1Rkf64okFKRgV6ad3LJv5eZhwa0Ys\nalq78fnRCr3jkINhsaJz+uhAOTxMBtw4MXrYn9vDZMTk+EAcKWtCa1fvsD8/EV2+I2VNeHZrHmpa\nu3BrRgxunxoHbzs/SnUuKeG+mJcaiqyiRhzmeiu6BCxW9B29FivWH63EgtHhuh22n54YDKsCDpbw\nDY3IEXT1WvDrD49ibVYpwv088KOrUzAhNtAu11LZ6prR4YgL8sLHB8tR39atdxxyECxW9B278upQ\n396D5eOjdMsQ6uuOuCAv7C9phFJKtxxEdHF5NW24cfUuvLuvBHNTQvHgnCSn2JrqzJWCBhG8t78M\nVr4XkQ1YrOg71h2ugJ+HG+aNDNU1x+S4QNS2dqOskYvYiezVhwfKsOzZr1HT2o3Xvj8Fi8ZGaLpR\nu94CvMxYkh6JkoYOHChu1DsOOQAWK/qWrl4LNh6rwvVjI3WbhHzGuBh/mIyC/XwzI7I7HT19+Pl7\nh/HTfx7G2Gh/rH98jtNuBzMxNgAJwV7YkFOFju4+veOQnWOxom/ZcrIG7T0WLJug32nAMzxMRoyJ\n8seR8ib0WnjJM5G9OFXdimXP7sIHB8rw+IIUvPPANET4e+gda8iICJaNj+7/xfN4td5xyM6xWNG3\nfHKoHKG+7pg+DFvY2GJyfCC6eq3IqeAkdiJ7sP5oJW5cvQtNHb146/5p+OnCVLgN8T6i9iDC3wMz\nk0OQXdSA0oYOveOQHXP+fw1ks+bOXmw9WYul6ZF2s0YiMcQbgV4mHCjh6UAiPVmsCn/acBKPvH0A\noyJ88fnjszFrhGttVrxgVBh8PdzwyeFyLmSn82Kxom9szKlCj8WK5ROGf3bV+RhEMDEuEPk1bWjq\n6NE7DpFLau7oxQ9ey8Jz2/Jx+9RYvPvQdIT7Oe+pv/NxNxmxeFwkKpq6sK+wQe84ZKdYrOgb6w5V\nID7YC+Nj/PWO8i2T4gKhABzgTCuiYXequhXLVn+NzPw6/P6msXjy5nTdL2zR07hofySFeGPziWp0\n91n0jkN2iMWKAAA1rV3IzK/DsvFRdjfQL8jbjKQQbxzgTCuiYbXhWP96qo4eC959cDrunBavdyTd\niQiuGxOBjh4LMvO5WTx9F4sVAQA25lTDqoCl6fpfDXguk+ID0dDegxIuGiUaclarwp835mLVWweQ\nGu6LTx+bjYyEIL1j2Y3YIC+MjvDFztO16OzhUSv6NhYrAgBsOl6NhGAvpIb76B3lnMZE+sHNINyz\ni2iItXf34aE3s/Hs1jzclhGLfzw83alHKVyua9LC0dVrxc68Wr2jkJ1hsSK0dvVid34dFqaF291p\nwDPcTUaMivDF0fIWWKw8HUg0FCqbO3HLC7ux5WQNfrdsDP7wvXEuvZ7qQiL9PTEu2h+ZefVo49BQ\nGsTxthwnzW0/VYtei8LCtAi9o1xQekwAjlW0oKCuDSlhvnrHIdLNO3tLNP+e5U2deHN3Ebr7rLhn\nRgJMRgPe3Veq+fM4kwWjw3CsvBk7TtVi8bhIveOQneARK8Km49UI8jZjcnyg3lEuaGSEL9zdDDhS\n2qx3FCKncryiBWt25MMggofnJiM1nL+42CLM1wMT4wKwp6AeLZ29eschO8Fi5eJ6LVZsPVmDBaPC\n7GYo6PmYjAaMifJDTmUz+rjFDdEVU0rh69O1eHtvMcL9PPDD+clcT3WJrh4VDqtS2Jpbo3cUshMs\nVi5uX2EDWrr6sDAtXO8oNkmPCUBXrxWnqlv1jkLk0CxWhU8OVWD9sSqMifLDA7OT4Oth0juWwwny\nNmNSXCD2FzdyrRUBYLFyeV/mVMHDZMCclFC9o9gkOdQH3mYjDpfxdCDR5erqteCN3UXYV9SAeamh\nWDk1DmY3/ji4XHNSQmGxKuwp4FwrYrFyaUopbDpejdkjQuFpdowrf4wGwdhof5ysauHUY6LL0NzZ\nizU7CpBf24bvTYrGdWMiYLDTq4EdRaivO0ZF+mFPQT16+rhMwdWxWLmwnIoWVDR34VoHOQ14RnpM\nAHotCicqeTqQ6FLUtHbhxe35aOzowX0zEzE5nkM/tTI3JQQdPRbsL+Yegq6OxcqFbTpeDRHg6tFh\neke5JPHBXvD3NOEIh4US2aykoQMvbi9An1XhwTlJGBFmn8OAHVV8sDfigrzwdV4dZ+25OBYrF7bp\neDUmxwUixMdd7yiXxCCC9Gh/nKpuRVNHj95xiOzeyaoWvPJ1AbzMRqyal4yoAE+9Izml2SNC0NjR\ni5wKrgF1ZSxWLqq8qRPHK1sc5mrAs6XHBMCqgC9zqvWOQmTX9hc34K09xQjz9cDD85IR5G3WO5LT\nSovyQ7C3GTtP13HDeBfGYuWitpzoLyTXOGixigrwQJC3GZ8drdQ7CpFdUkphW24NPjhQjuRQHzww\nJxE+7txsYygZRDA7JQTlTZ0orGvXOw7pxKZiJSKLRCRXRPJE5FfnuP9OETkiIkdFJFNExmsflbS0\nLbcWcUFeSArx1jvKZRERjIv2x668OjS283Qg0WBWpfDpkUp8ebwaE2IDcPeMeO75N0wmxQXC22zE\n13l1ekchnVy0WImIEcBqANcDSANwu4iknfWwQgDzlFLjAPwngDVaByXtdPVakJlfj/kjQ+1202Vb\njIv2h8Wq8OXxKr2jENmNXosVa7NKsaegHnNGhGDF5Bi4GXhyYriYjAZMTQxCblUrGvhLn0uy5V/b\nVAB5SqkCpVQPgLUAlg9+gFIqUynVOPDpHgAx2sYkLWUVNaCz14L5Ix1jKOj5RPp7ID7YC58d4elA\nIqD/l6bXMotwrLwZi8dG4PpxkZxRpYOpicEQAfYVcmCoK7KlWEUDGLzFednAbedzP4AvriQUDa1t\nubUwuxkwIylE7yhXRESwZFwkMvPr+ZshubyWgcGfJfUduDUjFrMdZDcFZ+TvacLoSD9kFzeil/ua\nuhxNjw+LyFXoL1a/PM/9D4lItohk19bWavnUdAm25dZgWmKQw0xbv5Al6ZGwWBU25vB0ILmu2tZu\nvLAjHw0dPbhnZjwmxAboHcnlTU8KRkePBUe5/ZbLsaVYlQOIHfR5zMBt3yIi6QBeBrBcKXXO459K\nqTVKqQylVEZoKH+b0kNpQwfya9sxf6RjDQU9n7RIPySGeGM9rw4kF1Xa0IEXd+Sjt8+KB2cnISXM\nV+9IBCApxBuhPu7Yw9OBLseWYpUFIEVEEkXEDGAlgHWDHyAicQA+BHC3UuqU9jFJK9tO9R8pdPT1\nVWeICBaPi0Bmfj3q27r1jkM0rHKrWvHy1wXwMPUP/owO5OBPeyEimJYUhLLGTpQ1dugdh4bRRYuV\nUqoPwGMANgI4AeCfSqkcEVklIqsGHvbvAIIBPCcih0Qke8gS0xXZnluD2CBPhx2zcC5LxkUNnA7k\nsFByHQeKG/HmniKE+rrj4blJCHawHRRcwaS4QJiNBuwp4P6BrsSmaXFKqfUA1p912wuDPn4AwAPa\nRiOtdff1j1n43qQYhx6zcLbRkb5ICvHG50crcMe0OL3jEA0ppRS2n6rFxpwqjAj1wZ3T4uBucvz1\nks7Iw2TEhLgAHChuxOKxEfDigFaXwOEmLiSrsBEdPY4/ZuFsIoIl6ZHYzdOB5OSsVoX/+Ow4NuZU\nIT3GH/fMjGepsnPTk4LRZ1XILm68+IPJKbBYuZBtuTUwGw2YkRysdxTNLR4XCasCNvDqQHJS3X0W\nPL72IP6+qwizkoNxa0YsB386gAg/DyQEeyGrqIH7B7oI/qt0IdtO1WJaUhC8zM53OHpUhC+SQr3x\nOYeFkhNq7erF9/+ehc+OVOLX14/CYg7+dChTEoJQ397D/QNdBIuViyhr7EBeTRvmpTrXacAzRARL\nx0ViT0E96ng6kJxIdUsXbn1xD/YVNuCvt47Hw/OSnWqNpCsYG+0PD5MBWUVcxO4KWKxcxLZc5xqz\ncC5L0qP6Twce4+lAcg6nqltx0+pdKKlvxyv3TcHNk7hbmCMyGQ2YEBuAnIoWdPT06R2HhhiLlYvY\nlluL6ABPJIf66B1lyKSG+yCZpwPJSezOr8f3ns9En1XhHw/PcNqjza5iSkIQ+qwKh0qb9I5CQ4zF\nygX0j1mow/yRoU59CqH/6sAo7C2sR01rl95xiC7bJ4fKce+r+xDu54EPH5mJsdH+ekeiKxTp74no\nAE9kFzVyEbuTY7FyAdlFZ8YsOMc2NheyNL3/6sCNPB1IDkgphee35eOJtYcwIS4AH6yaiZhAL71j\nkUamJAShqqULZY2dekehIcRi5QLOjFmY6YRjFs6WGu6LlDAffMbTgeRgLFaFf/vkGP644SSWpkfi\nzfunwt/LpHcs0lB6jD9MRuEidifHYuUCtuXWYkpiILxdZOrvkvRI7Ctq4OlAchidPRY8/OZ+vLWn\nBA/PTcIzKyfC3Y2DP52Nh8mI9OgAHClrRnevRe84NERYrJxceVMnTte0YX6q858GPGPJuEgoXh1I\nDqKyuRO3vrgbX52sxn8sH4NfLx4Ng8F510K6uikJgeixWHG0vFnvKDREWKyc3LbcGgDOPWbhbCnh\nvkgN5+lAsn8HSxqx7NldKKhtw0t3Z+CeGQl6R6IhFhvkhTBfd54OdGIsVk7uzJiFEWHOO2bhXJaM\ni0JWUQOqW3g6kOzTRwfLcNuaPfA0GfHRo7NwTVq43pFoGIgIJscHorSxk8sVnBSLlRPr6bMiM68O\n85x8zMK5LB3ffzqQR63I3lisCk+uP4Gf/OMwJsUF4ONHZyE13FfvWDSMJsQGwCDAgWLOtHJGLFZO\nLLuoAe09Fsx3wcGCyaE+GBvth3WHyvWOQvSN1q5ePPhGNl7cUYA7p8XhzfunIcjbrHcsGma+Hiak\nhvviYGkj+ixWveOQxlisnNi2U7UwGQUzR4ToHUUXy8ZH4XBZM4q48SnZgaK6dtz0XCa2n6rFf944\nFr+/aRxMRr4Fu6rJ8YFo7erDzrw6vaOQxviv2olty63BlIQg+LjImIWzLU2PAgB8erhC5yTk6r4+\nXYflq3ehrq0bb94/FXdPj9c7EulsZIQvvMxGvJ9dpncU0hiLlZOqaOrEqeo2l7oa8GxRAZ6YmhiE\nTw5XcAsJ0oXVqvDMV6dx96t7Ee7njk8enYWZya55BJm+zc3QvzHzpuPVaOro0TsOaYjFyklty60F\nAJfYxuZClo2PQl5NG05UtuodhVxMY3sPfvB6Fv666RSWj4/Cx4/OQnywt96xyI5MiuufabWOR9Wd\nCouVk9qWW4Mofw+kuNiYhbMtHhcJN4Pgk8NcxE7D52BJI5b+79fIzKvHf904Fk/dNgFeZtc8JU/n\nFxXgibRIP7zH04FOhcXKCfX0WbErrw7zRoa53JiFswV5mzEnJQSfHa6E1crTgTS0rNb+TZRveWE3\nAOC9VTNw1/R4l/93SOd3S0YMjpY342RVi95RSCMsVk4ou3hgzIILr68abNmEKJQ3dWJ/SaPeUciJ\n1bR04Z5X9+GPG07iujERWP/4HIyPDdA7Ftm55ROiYTIKF7E7ERYrJ7Q9t3/MwiwXHbNwtoVpEfAw\nGbDuENcx0NDYfLwai/62E9nFDfjDzePw7B0T4e9l0jsWOYAgbzMWjArHx4fK0cuZVk6BxcoJbcut\nRUa8645ZOJuPuxsWjA7H50cr+cZFmmrt6sUv3z+CB97IRpivOz770WysnBrHU390SW7JiEFdWw+2\nnqzROwppgD95nUxFUydyq1vx6+tH6R3Frtw4IRqfH6nEztO1uHoU92Qj27yzt+S89xXUteGD/WVo\n6ujFvNRQLBgVhn2FjdhXyFPOdGnmpYYixMcd7+8vw7VjIvSOQ1eIR6yczPZTHLNwLvNHhiLY28yr\nb+iK9fRZ8fmRCryysxAigofmJuG6MRFw4xR1ukxuRgNunhSNLSdrUNfWrXccukJ8J3Ay23JrEOnv\ngdRw1x6eXLNrAAAgAElEQVSzcDaT0YDlE6Kx+UQ1Gts5jI8uT15NG/721Snsyq/H1MQg/OjqEZxN\nRZpYMTkGfVaFjw9yNIyjY7FyIv1jFuoxf2Qo13icw4rJMei1KA7jo0vW2WPBBwfK8OquQhhE8OCc\nJCyfEA13N6Pe0chJpIb7YnyMP97fX8adIhwci5UT2V/ciLbuPsxL5WnAc0mL8sOYKD+8v5+nA8k2\nSikcKm3EXzefwsGSRsxLDcXjC1KQGMKjVKS9FRmxOFnVipwKzrRyZCxWTmTbqRq4GQSzRgTrHcVu\nrZjMYXxkm/zaNryyqxD/zC5DkJcJj8wfgevGRMDEtVQ0RJalR8HsZsB72aV6R6ErwHcIJ7I9txYZ\nCYHw9eD8nPM5M4zvAx61ovNo7erFHzecxPVP70RFUyeWT4jCw/OSERXgqXc0cnL+XiZcmxaOTw5X\noLvPonccukwsVk6iqrkLJ6taeTXgRQR5m3H1qDB8dLCCM63oWyxWhXf3leCqP2/D89vysXR8JH5y\nTSqmJQbDwDWLNExWTI5BU0cvvjrBmVaOisXKSWwZGCzHbWwubsXkWNS1dWPHwGgKol15dVjyzE78\n+sOjSAzxxrrHZuGvt07g0V8adnNSQhHh58HTgQ6MA0KdxJaT1YgO8MTIcF+9o9i9MzOt3t9fhgWj\nOSzUlRXUtuG/15/A5hM1iA3yxHN3TsL1YyN4VS3pxmgQ3DwpGi9sz0dNSxfC/Dz0jkSXiEesnEBX\nrwVf59XhmtFh/IFgA5PRgBsn9s+0qucwPpfU1NGD332ag2uf2oE9BQ341fWjsOkn87B4XCT/DZHu\nVkyOgVUBH3KmlUNisXICu/Lq0NVr5dGXS3DblFj0WhTe4yJ2l9JrseLvuwox73+24fXMItw6JRbb\nfjEfq+Ylw8PEmVRkH5JCfTA5PpAzrRwUi5UT2HyiBt5mI6YlBekdxWGkhvtiWmIQ3t5bDIuVb1zO\nTimFr05U47qnd+B3nx5Heow/1j8xB/990ziE+LjrHY/oO26ZHIO8mjYcKm3SOwpdIq6xcnBKKWw5\nWY05KaGcAn2J7p4Rj8feOYjtp2q4MbPOLrTZ8ZWqbO7EF0erkFfbhhAfd9wzIx4jw31xoLgJB4r5\nQ4vs05L0SPz20xy8t78ME+MC9Y5Dl4BHrBxcTkULqlu6sWA0xyxcqmvTIhDq6443dxfrHYWGQGtX\nLz46WIZnt+ShvKkTS9Mj8cSCFIyK8OM6KrJ7vh4mXD82Ep8erkBXL2daORIWKwe3+UQ1RICrRrFY\nXSqzmwG3T43DtlO1KKnv0DsOaaTXYsX23Br8ddMp7C9uxMzkYPz82pGYmRwCo4GFihzHiskxaO3q\nw8acKr2j0CVgsXJwX52owcTYAK4TuUy3T42FQQRv7+NRK0enlMKRsiY8vfkUNh6vRlKIN368IBVL\n0qPgaeZpcnI8M5KCER3gyf1NHQyLlQOrbunC0fJmXg14BSL9PbFwdDj+mVXKw+0OrKyxA2t2FGBt\nVinc3Yy4f3Yi7p6RgBBf/sJBjstgEHxvcgy+zqtDRVOn3nHIRixWDuzMtHWur7oyd8+IR2NHLz4/\nUql3FLpErV29eH9/GZ7blo/69h7cNDEaj109AsmhPnpHI9LEikkxUAr48ACPWjkKXhXowL46wWnr\nWpiZHIykUG+8uacY35sco3ccskGfxYrM/Hpsya2BxaowNyUU80eGchYVOZ24YC9MTwrCP7PL8Mj8\nETBwnaDd4xErB8Vp69oREdw1LR6HSptwoKRR7zh0AUopnKhswdNfncaGnCokh3jjxwtSsGhsBEsV\nOa2VU+JQ0tCB3QX1ekchG7BYOaivT/dPW7+a66s0ceuUWPh7mvD8tny9o9B5VLd04bXMIry5pxhG\ng+D7MxNw94wEBPPCDXJyi8ZGwN/ThHf3Dd28N9IOTwU6qC+OVcHXww0zkoL1juIUfNzdcO+MeDyz\nJQ+nq1uRwtOrdqO714LNJ6qxu6AeZjcDlqZHYlpiMEcnkMvwMBlx08RovLO3BA3tPQjyNusdiS6A\nR6wcUK/Fis0nqrFwdDjMbvy/UCv3zUqEp8mI57fzqJU9UErhaHkzntp8Cpn59ciID8LPFnIeFbmm\n26fGocdi5SJ2B8Cfyg5od349mjt7sWhshN5RnEqQtxkrp8Zi3aEKlDVyYKieGtp78PruIry7rwTe\n7m5YNS8ZN06Mhrc7D7KTaxoZ4YuJcQF4d18JN2a2cyxWDuiLY1XwMhsxNzVU7yhO54E5SQCAl3cW\n6pzENfVZrNiaW4OnN59CUX0HloyLxCPzRyA2yEvvaES6u31KHPJr25FdzIts7BmLlYOxWBU2Ha/C\nVaPCeBXUEIgO8MSNE6OxNqsE9W3desdxKfm1bXhmSx42Ha/GqEg//OSaVMwawdN+RGcsHR8JH3c3\nLmK3czYVKxFZJCK5IpInIr86x/2jRGS3iHSLyM+1j0lnZBU1oK6tB9fzNOCQWTUvCd19VryWWaR3\nFJfQ3NE/5POVrwthVQr3zUzAHVPj4O9p0jsakV3xMrth2YQorD9aiebOXr3j0HlctFiJiBHAagDX\nA0gDcLuIpJ31sAYAjwP4s+YJ6Vs2HKuCu5sBV43ktPWhMiLMF9emheP1zCK0dPHNayhtOl6NhU9t\nx6HSRsxLDcUTC1KQyisyic7r9ilx6Oq14pND5XpHofOw5YjVVAB5SqkCpVQPgLUAlg9+gFKqRimV\nBYA/hYaQ1aqw4VgV5qaGchHvEPvR1Slo6erjXKsh0tDegyfWHsSDb2QjyNuMH84fgevGRMBk5OoE\nogsZF+OPsdF+eHsPF7HbK1vexaIBlA76vGzgNhpmh8qaUNXSxdOAw2BstD9unBCFV78u5OanGlt/\ntBLXPrUd649W4ifXpGLdY7MRHeCpdywih3H39HjkVrdiX2GD3lHoHIb110MReUhEskUku7a2djif\n2ilsOFYFk1GwgNPWh8XPrxsJBeAvX57SO4pTqG3txiNv78cjbx9ApL8nPv3RbDxxTQpnsRFdomXj\no+HvacIbe4r1jkLnYMs7WjmA2EGfxwzcdsmUUmuUUhlKqYzQUI4KuBRKKXxxrBIzk0O4qHeYxAR6\n4fszE/DhwTIcr2jRO47DUkrhk0PluPap7dh8vAa/uG4kPnpkJkZF+OkdjcgheZqNuDUjBhuPVaG6\npUvvOHQWW4pVFoAUEUkUETOAlQDWDW0sOltORQtKGzp5GnCYPTJ/BPw8THjyixN6R3FI1S1dePCN\n/Xhi7SEkhHhj/ROz8ehVI+DGtVREV+Su6fGwKIV39nL0gr256LubUqoPwGMANgI4AeCfSqkcEVkl\nIqsAQEQiRKQMwE8B/KuIlIkIfx3V0CeHymEyCq4bw2I1nPy9TPjR1SOw83Qdtp/i6WtbKaXwXnYp\nFv51O3aersX/XTwa76+aiRFhvOKPSAvxwd6YlxqKd/eVoNdi1TsODWLTr41KqfVKqVSlVLJS6vcD\nt72glHph4OMqpVSMUspPKRUw8DHPnWjEYlX45FAF5o8MQyA33xx2d8+IR2yQJ55cfwIWK6/CuZiK\npk7c9/cs/OL9IxgV4YcNP56LB+cmcdAnkcbunZGAmtZubMyp0jsKDcLj8Q5gV14dalq7cfNEXoyp\nB3c3I361aDROVrXila8L9I5jt9TAaYlrn9qBfYUN+O0NaVj70HQkhnjrHY3IKc1LDUVckBfeyOQi\ndnvCYuUAPj5YDj8PN1w1ikNB9bJ4XASuGR2Ov3x5CgW1bXrHsTulDR2465W9+JePjiI9xh8bfzwX\n981KhIFHqYiGjMEguHt6PPYVNeBkFU8S2QsWKzvX0dOHDTlVWJIeyb0BdSQi+O+bxsLdzYD/8/4R\nWHlKEED/0NrXM4tw3dM7cLi0Gb+/aSzefmAa4oK5aTLRcLglIwbubga8zi247AaLlZ3bmFOFjh4L\nbpoYo3cUlxfm54F/v2EMsosb8fruIr3j6K6orh0rX9qD36zLQUZCEDb+ZC7unBYPER6lIhouAV5m\n3DwpBh8cKEcdN463CyxWdu6jgxWIDvBERnyg3lEIwPcmRWP+yFD8aUMuiuvb9Y6jiz6LFS/tKMCi\nv+3AicoW/GlFOl7//hROTyfSyQNzEtFrseKN3VxrZQ9YrOxYTUsXvj5di5smRnOtip0QETx58zi4\nGQS//MD1TgkeK2/Gjc/twu/Xn8DsESHY9JN5uDUjlkepiHSUHOqDa0aH483dRejssegdx+WxWNmx\ndYcrYFXAjbwa0K5E+nvi35amYU9BA/6yKVfvOMOis8eCJ9efwPLVu1DV3I3Vd0zCS/dkIMLfQ+9o\nRATg4blJaOzoxXv7Sy/+YBpSbnoHoPP76GA50mP8MSLMR+8odJZbMmJwsLQRq7fmY1SEH24YH6V3\nJJtczpTmvJo2fHyoHA3tPciID8T1YyPR3NmLd/fxDZzIXkyOD8TEuAC8vLMQd06L59w4HfGIlZ3K\nrWpFTkULbuLRKrskIvjdsrGYkhCIX7x/GMfKm/WOpLmO7j68v78Ur+4qhAB4YHYibp4UA08zr04l\nsjcigofnJqGkoQMbjnFgqJ5YrOzU23uLYTYasMxBjoS4IrObAc/fNRlBXmY8+EY2alud44ocpRQO\nljTiqc2ncKi0CfNTQ/H4ghQkhfLIKZE9W5gWgYRgL6zZkQ+lXGv9pz1hsbJDbd19+PBAOZamRyLY\nx13vOHQBIT7uWHNPBho7erDqrf0Ov3C0oqkTa3YU4L39ZQjyNuPRq0bg2jERMHHTZCK7ZzQI7p+T\nhMNlzdhX2KB3HJfFd0s79PHBcrR19+GuGfF6RyEbjI32x19umYCDJY2499V9aO3q1TvSJevo7sMn\nh8qxemse6tr6t096eF4yIv05QoHIkdwyOQZB3mY8ty1f7ygui8XKziil8ObuYoyN9sPE2AC945CN\nlqRH4m8rJ+JASSPuenkvmjp69I5kk16LFTtO1eLPm3Kxr7AB05OD8dOFI5GREAQDRygQORwPkxEP\nzEnE9lO1OFDSqHccl8RiZWeyihqRW92Ku6dzgrWjuWF8FF64azJOVLZi5Zo9dr3mynpmHdWmU9iQ\nU4X4IG/8aEEKbkiP4uJ0Igd374wEBHmb8dSmU3pHcUksVnbmzT3F8PNww7LxvBrQEV2TFo5X75uC\n4voO3PribpyotK+NUa1K4UhZE5756jTe218GL3cj7p+diHtnJiDCjzOpiJyBt7sbVs1Lws7Tdcgq\n4lqr4cZiZUdqWruw4VglbsmI5VEDBzY7JQRv3j8Vbd19WP7sLry8s0D3Ce0Wq8Inh8rxt69OY21W\nKZQCbsuIxSPzRyCZV/sROZ27pycgxMedR610wGJlR/6xrxS9FoU7p8XpHYWuUEZCEDY8MQfzRobi\nvz4/gXte3Yeq5q5hz9Hc0Ys1O/Ix73+24om1hyAAVk6JxRPXpGB8bADXURE5KU+zET+cn4zM/Hrs\nzq/XO45L4eR1O9FnseKdfSWYkxLCeUFOItjHHWvunoy1WaX4j0+PY+FT23H/7ER8f2Yi/L1MQ/a8\nSikcLmvGP7JK8dHBMnT1WjEtMQj/uiQNdW3dLFNELuLOaXF4cXs+ntp8CtOTpnPd7jBhsbITXxyr\nQmVzF367bIzeURzK5WzRMhzuGDjqKCK4fWocpiUG4ckvTuLpzafxys5C3DMzHvfPTkKQt1mz5zxd\n3Yp1hyuw7nAFius74O5mwE0To3HvzASMjvQDYL+vFxFpz8NkxCPzk/HbT49jd349Zo4I0TuSS2Cx\nsgNWq8KzW/IwIqx/h3JyPkmhPnjpngwcr2jB6q15eG5bPl7aWYjpScFYMCoMV48KQ2yQ1yV9z5qW\nLuwuqEdmXj0yC+pQ2tAJgwAzk0Pw6FUjcN2YCPh7Dt2RMSKyfyunxuHFHQX444aT+OiRWTBwD8Eh\nx2JlB748Xo3c6lY8fdsEbpzp5NKi/LD6zkk4Xd2KtVml2HqyBr9Zl4PfrMtBfLAXEoK9ERvkiZhA\nL4T6uMOiFPosCn1WK1q7+lBU147CunYU1bejrq1/VpafhxumJwXjwTlJWDQ2AmG+vLqPiPp5mIz4\nxXUj8dN/HsaHB8uxYnKM3pGcHouVzpRS+N8tp5EQ7IWl6ZF6x6FhkhLui39bmoZ/W5qGwrp2bDlZ\ng6zCBpQ1deBwWROaOs49vT3M1x2JId64ZnQ4RoT5YHpSMEZH+rGQE9F53TghGq/vLsafNpzE9WMj\n4O3OH/1Dia+uzrbm1iCnogV/WpEON+7H5pISQ7xx/+xE3D878ZvbWrt6Ud/WA6NBYHYzwM0g8DQb\n4WXmP1kiujQGg+A3N6Th5ucy8dy2PPziulF6R3JqfJfWkVIKz3yVh5hAT9w0kQNB6f/z9TDB14Pr\no4hIG5PiAnHTxGi8tLMQK6fEXfKaTrIdD5HoaOfpOhwqbcIP5yfDxKNVREQ0hH65aBSMIvjv9Sf0\njuLU+NNcJ2fWVkX6e3AxIRERDbkIfw88Mj8ZXxyr4tDQIcRipZP+PZwa8fDcJLi7cfsaIiIaeg/O\nTUJMoCf+9eOj6Oq16B3HKbFY6aCnz4rffdp/ef3Kqdy+hoiIhoeHyYgnbx6H/Np27iM4RFisdPB6\nZhHya9vx70vT4GHi0SoiIho+c1JCcce0OKzZWYD9xQ16x3E6LFbDrKalC3/76jSuGhmKBZyyTkRE\nOviXxaMR5e+JX7x3hKcENcZiNcz+sOEkevqs+PcbuCcgERHpw8fdDX9akY6Cunb8eWOu3nGcCovV\nMNpf3IAPD5TjgTmJSAzx1jsOERG5sFkjQnDX9Di8sqsQWUU8JagVFqthYrEq/GZdDiL8PPDoVSP0\njkNERIRfXz8aMYGeeOLdg6hr69Y7jlPg5PVhsmZHAY6Vt+CZ2ydynyYX8M7eEr0jEBFdlLe7G56/\nczK+93wmHnvnAN66fxq3V7tCfPWGwYGSRvz5y1wsSY/EDdxomYiI7MjYaH88efM47ClowJNfnNQ7\njsPjoZMh1tzZi8ffPYhIfw88efM4iIjekYiIiL7l5kkxOFLWjFe+LsS4aH/cyP1rLxuPWA0hpRT+\n5cOjqGruwjO3T4QfN9UlIiI79X+XjMbUxCD86sMjOFberHcch8ViNYTWZpXi86OV+Nm1IzEpLlDv\nOEREROdlMhqw+o5JCPQy4/uvZaGwrl3vSA6JxWqIHClrwm/X5WBOSggenpukdxwiIqKLCvV1xxs/\nmAqLVeGOl/agtKFD70gOh8VqCOTVtOLeV/ch1Ncdf7l1PAwGrqsiIiLHkBLui7fun4aOHgvueHkP\nKps79Y7kUFisNFbe1Im7X9kHo8GAt+6fhjBfD70jERERXZK0KD+88YOpaGrvxR0v7UVNS5fekRwG\ni5WG6tq6cffLe9HW3Yc3fjAVCZyuTkREDmp8bABe+8EUVLd0YcULu3G6ulXvSA6BxUojDe09uPfV\nfaho7sTf75uCtCg/vSMRERFdkcnxQXjnweno7LXg5ucysTW3Ru9Ido/FSgOnqluxfPXXOF3Thhfu\nmoyMhCC9IxEREWliQmwAPnl0FmKDvHD/a1l4eWcBlFJ6x7JbLFZX6KsT1bj5uUx09Vrxj4emY/7I\nML0jERERaSoqwBPv/3AGrk2LwH99fgI//schNHX06B3LLrFYXSalFF7Yno8H3shGQogX1j02CxM5\nq4qIiJyUl9kNz905CT9dmIrPj1Timr/uwIZjVXrHsjssVpchr6YVt63Zgz98cRKLx0XivYdnItLf\nU+9YREREQ8pgEDy+IAWfPDYL4X7uWPXWfjz6zgHUtnbrHc1ucK/AS9DVa8GzW/Lw4o58eJnd8OTN\n47BySiz3/yMiIpcyJsofHz86Cy9uz8czX+Vh68ka3DszAQ/NSUKgt1nveLpisbJBV68FHx8sx+pt\neSht6MTNE6PxL0tGI8THXe9oREREujAZDXjs6hQsHheJpzefxgvb8/Hm7mJ8f1YCfjAr0WULFovV\nBTS29+CtPcV4fXcR6tp6kBbph3ceTMfM5BC9oxEREdmFpFAfPHP7RDx29Qj8bfNp/O+WPLy4vQAL\nx4Tj1oxYzB4RAqML7UDCYnWWlq5ebDlRgw3HqrDtVA26eq2YlxqKh+YmYWZyME/7ERERnUNquC9W\n3zkJT1S34t19JfjoYDk+P1KJSH8PLBkXiXkjQzElIQgeJqPeUYeU2DKLQkQWAfgbACOAl5VSfzjr\nfhm4fzGADgD3KaUOXOh7ZmRkqOzs7MvNrZmOnj4cLm3GwdJG7CtsQGZePXosVoT5uuO6MRG4c3oc\nRkVw2Oc7e0v0jkBE5HTumBand4Qh091nwebjNXhvf+k3P1s9TAbMSArG1MRgjIv2x7hof/h7mfSO\nahMR2a+UyrjY4y56xEpEjABWA1gIoAxAloisU0odH/Sw6wGkDPyZBuD5gf+1Cx09fahv60FNazeK\n69tRVNeOwvoO5Ne0Ibe6FRZrf7lMCvXGvTPjsWhsBCbGBnLzZCIiosvk7mbEkvRILEmPREdPH/YW\nNGD7qVpsP1WLrbm13zwuLsgLqeE+iAvyRnywF+KCvRDp74EgbzOCvMxwMzrWAANbTgVOBZCnlCoA\nABFZC2A5gMHFajmAN1T/4a89IhIgIpFKqUrNE9voZFULHng9G/VtPejstXzrPoMA0YGeSAzxwdWj\nwjApPgATYwNddqEdERHRUPIyu+GqUWG4alT/EO3G9h4cq2jG0fJmHC1rRkFtO3bl1X/n5zUABHqZ\n4OthgqfJCE+zEZ4mI9yM///Ah4hgwagw3DszYbj+cy7IlmIVDaB00Odl+O7RqHM9JhqAbsUqwNOM\nKQlBCPY2I9jHHcE+ZoT4mBEX5I3YIE+4uzn3OV4iIiJ7FehtxpyUUMxJCf3mNqUUalu7UdzQgdrW\nbtS3daOurQcN7T1o6+5DR08fOnos6OyxoKtPDXxN/9eeq5DpZVgXr4vIQwAeGvi0TURyh/P56bKF\nAKjTO4Sd4WvyXXxNvo2vx3fxNTnLnXoHcBKfAPjh0D9NvC0PsqVYlQOIHfR5zMBtl/oYKKXWAFhj\nSzCyHyKSbcuCPVfC1+S7+Jp8G1+P7+JrQq7AlhVhWQBSRCRRRMwAVgJYd9Zj1gG4R/pNB9Cs5/oq\nIiIiIj1c9IiVUqpPRB4DsBH94xZeVUrliMiqgftfALAe/aMW8tA/buH7QxeZiIiIyD7ZtMZKKbUe\n/eVp8G0vDPpYAXhU22hkR3j69rv4mnwXX5Nv4+vxXXxNyOnZNCCUiIiIiC7OsaZuEREREdkxFiu6\nIBFZJCK5IpInIr/SO4/eRORVEakRkWN6Z7EHIhIrIltF5LiI5IjIE3pn0puIeIjIPhE5PPCa/E7v\nTPZARIwiclBEPtM7C9FQYrGi8xq0ndH1ANIA3C4iafqm0t1rABbpHcKO9AH4mVIqDcB0AI/y7wi6\nAVytlBoPYAKARQNXS7u6JwCc0DsE0VBjsaIL+WY7I6VUD4Az2xm5LKXUDgANeuewF0qpyjMbriul\nWtH/gzNa31T6Uv3aBj41Dfxx6cWsIhIDYAmAl/XOQjTUWKzoQs63VRHRd4hIAoCJAPbqm0R/A6e9\nDgGoAbBJKeXqr8nTAP4PAKveQYiGGosVEV0xEfEB8AGAHyulWvTOozellEUpNQH9u1BMFZGxemfS\ni4gsBVCjlNqvdxai4cBiRRdi01ZF5NpExIT+UvW2UupDvfPYE6VUE4CtcO11ebMALBORIvQvJ7ha\nRN7SNxLR0GGxoguxZTsjcmEiIgBeAXBCKfVXvfPYAxEJFZGAgY89ASwEcFLfVPpRSv1aKRWjlEpA\n/3vIFqXUXTrHIhoyLFZ0XkqpPgBntjM6AeCfSqkcfVPpS0TeBbAbwEgRKROR+/XOpLNZAO5G/1GI\nQwN/FusdSmeRALaKyBH0/3KySSnFEQNELoKT14mIiIg0wiNWRERERBphsSIiIiLSCIsVERERkUZY\nrIiIiIg0wmJFREREpBEWKyIiIiKNsFgR0UWJiGVgRlWOiBwWkZ+JiGHgvgwReeYCX5sgIncMX9rv\nPHfnwL59dkFEbhORPBHhbCsiJ8RiRUS26FRKTVBKjUH/JPHrAfwGAJRS2Uqpxy/wtQkAdClWA/IH\n9u2zmYgYhyqMUuofAB4Yqu9PRPpisSKiS6KUqgHwEIDHpN/8M0dfRGTeoAnsB0XEF8AfAMwZuO0n\nA0eRdorIgYE/Mwe+dr6IbBOR90XkpIi8PbBlDkRkiohkDhwt2yciviJiFJH/EZEsETkiIg/bkl9E\nPhaR/QNH3x4adHubiPxFRA4DmHGe5xwz8PGhgedMGfjauwbd/uKZYiYiiwb+Gw+LyFca/t9ARHbK\nTe8AROR4lFIFA+Uh7Ky7fg7gUaXULhHxAdAF4FcAfq6UWgoAIuIFYKFSqmugmLwLIGPg6ycCGAOg\nAsAuALNEZB+AfwC4TSmVJSJ+ADoB3A+gWSk1RUTcAewSkS+VUoUXif8DpVTDwD5+WSLygVKqHoA3\ngL1KqZ8N7I158hzPuQrA35RSbw88xigiowHcBmCWUqpXRJ4DcKeIfAHgJQBzlVKFIhJ0yS80ETkc\nFisi0tIuAH8VkbcBfKiUKhs46DSYCcCzIjIBgAVA6qD79imlygBgYF1UAoBmAJVKqSwAUEq1DNx/\nLYB0EVkx8LX+AP5fe/cTYlMYxnH8+ytTJk23FKXIvzBKLKTYiChFihKrsWZBLMVabCyQLCxI2Y1S\n/swoJRtXykaSlDVXzEIYxp3H4n2vrtu45946NTr9Pqu395xz3+dsbs993uecuwooSqyOS9qfx0vy\nNZ9yLKN5fs0/1nwKnJa0ON/fW0k7gI2kJA1gEGgAm4EnrUQvIj4XxGVmFeDEysz6JmkFKRFpAGtb\n8xFxTtI9YDepgrRrhstPAh+ADaR2hMm2Yz/axk26f0cJOBYR433EvQ3YCWyJiG+SHgNz8+HJiGh2\nu+H6ogEAAAFhSURBVD4ibkl6BuwB7uftRwE3IuJUx1p7e43LzKrDPVZm1hdJC4CrwOXo+Bd3SSsj\n4mVEnAeeA8PAF2Co7bQaqRo0DYwARY3ib4BFkjblNYYkzQHGgaOSBvL8aknzCj6rBkzkpGqYVFXq\nec2cUL6LiIvAHWA98Ag4IGlhPne+pKVAHdgqaXlrviA2M6sAV6zMrBeDeWtuAPgF3AQuzHDeCUnb\ngWngFfAgj5u5Kfw6cAUYlXQYGAO+dls4In5KOgRcyn1R30lVp2ukrcIXucn9I7Cv4D7GgCOSXpOS\np3qfax4ERiRNAe+Bs7lf6wzwUOkVFFOkPrN6bo6/necbpCcqzazC1PGD08ysMiQtA+5GxLpZDuUv\neUvyT0O/mVWHtwLNrMqaQE3/2QtCSVW7idmOxczK54qVmZmZWUlcsTIzMzMriRMrMzMzs5I4sTIz\nMzMriRMrMzMzs5I4sTIzMzMryW+Q8ZG9f+ruDgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(swire['swire_ra'], swire['swire_dec'])\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Given the graph above, we use 1 arc-second radius\n", + "master_catalogue = merge_catalogues(master_catalogue, swire, \"swire_ra\", \"swire_dec\", radius=1.*u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cleaning\n", + "\n", + "When we merge the catalogues, astropy masks the non-existent values (e.g. when a row comes only from a catalogue and has no counterparts in the other, the columns from the latest are masked for that row). We indicate to use NaN for masked values for floats columns, False for flag columns and -1 for ID columns." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "for col in master_catalogue.colnames:\n", + " if \"m_\" in col or \"merr_\" in col or \"f_\" in col or \"ferr_\" in col or \"stellarity\" in col:\n", + " master_catalogue[col] = master_catalogue[col].astype(float)\n", + " master_catalogue[col].fill_value = np.nan\n", + " elif \"flag\" in col:\n", + " master_catalogue[col].fill_value = 0\n", + " elif \"id\" in col:\n", + " master_catalogue[col].fill_value = -1\n", + " \n", + "master_catalogue = master_catalogue.filled()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<Table length=10>\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
idxps1_idradecflag_mergedcandels_idcandels_stellaritywirds_intidwirds_stellarityflag_merged_wirdscfhtls-wide_idcfhtls-wide_stellaritycfhtls-deep_idcfhtls-deep_stellarityhsc-wide_idhsc-wide_stellarityhsc-deep_idhsc-deep_stellarityhsc-udeep_idhsc-udeep_stellaritydecals_idsparcs_intidsparcs_stellaritysxds_b_idflag_merged_sxdsdxs_iddxs_stellarityuds_iduds_stellarityvipers_idvideo_idvideo_stellarityvideo_flag_gaiavhs_idvhs_stellarityviking_idviking_stellarityviking_flag_gaiaservs_intidswire_intid
degdeg
010304035434939254435.4349721923-4.13153415525False-1nan-1nanFalse-1nan-1nan-1nan-1nan-1nan-1-1nan-1False-1nan-1nan-1-1nan0-1nan-1nan0-1-1
110278034905085838534.9051226823-4.34320021525False-1nan-1nanFalse-1nan-1nan-1nan-1nan-1nan-1-1nan-1False-1nan-1nan-1-1nan0-1nan-1nan0-1-1
210314035076189966935.0762068823-4.04235938525False-1nan-1nanFalse-1nan-1nan-1nan-1nan-1nan-1-1nan-1False-1nan-1nan-1-1nan0-1nan-1nan0-1-1
310290034901845990134.9018332223-4.24209351525False-1nan-1nanFalse-1nan-1nan-1nan-1nan-1nan-1-1nan-1False-1nan-1nan-1-1nan0-1nan-1nan0-1-1
410316034884877269334.8848419323-4.03145872525False-1nan-1nanFalse-1nan-1nan-1nan-1nan-1nan-1-1nan-1False-1nan-1nan-1-1nan0-1nan-1nan0-1-1
510314035075926955935.0759661923-4.04239428525False-1nan-1nanFalse-1nan-1nan-1nan-1nan-1nan-1-1nan-1False-1nan-1nan-1-1nan0-1nan-1nan0-1-1
610309035556019659335.5558866523-4.08643243525False-1nan-1nanFalse-1nan-1nan-1nan-1nan-1nan-1-1nan-1False-1nan-1nan-1-1nan0-1nan-1nan0-1-1
710321035471379327435.4714062823-3.98929835525False-1nan-1nanFalse-1nan-1nan-1nan-1nan-1nan-1-1nan-1False-1nan-1nan-1-1nan0-1nan-1nan0-1-1
810254035345970719835.3460365923-4.54431680525False-1nan-1nanFalse-1nan-1nan-1nan-1nan-1nan-1-1nan-1False-1nan-1nan-1-1nan0-1nan-1nan0-1-1
910278034904876816434.9048964923-4.34362877525False-1nan-1nanFalse-1nan-1nan-1nan-1nan-1nan-1-1nan-1False-1nan-1nan-1-1nan0-1nan-1nan0-1-1
\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "master_catalogue[:10].show_in_notebook()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## III - Merging flags and stellarity\n", + "\n", + "Each pristine catalogue contains a flag indicating if the source was associated to a another nearby source that was removed during the cleaning process. We merge these flags in a single one." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "flag_cleaned_columns = [column for column in master_catalogue.colnames\n", + " if 'flag_cleaned' in column]\n", + "\n", + "flag_column = np.zeros(len(master_catalogue), dtype=bool)\n", + "for column in flag_cleaned_columns:\n", + " flag_column |= master_catalogue[column]\n", + " \n", + "master_catalogue.add_column(Column(data=flag_column, name=\"flag_cleaned\"))\n", + "master_catalogue.remove_columns(flag_cleaned_columns)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "combining the flag_merged column which contains information regarding multiple associations" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "master_catalogue['flag_merged'].name = 'flag_merged_tmp'\n", + "flag_merged_columns = [column for column in master_catalogue.colnames\n", + " if 'flag_merged' in column]\n", + "\n", + "flag_merged_column = np.zeros(len(master_catalogue), dtype=bool)\n", + "for column in flag_merged_columns:\n", + " flag_merged_column |= master_catalogue[column]\n", + " \n", + "master_catalogue.add_column(Column(data=flag_merged_column, name=\"flag_merged\"))\n", + "master_catalogue.remove_columns(flag_merged_columns)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Each pristine catalogue contains a flag indicating the probability of a source being a Gaia object (0: not a Gaia object, 1: possibly, 2: probably, 3: definitely). We merge these flags taking the highest value." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "flag_gaia_columns = [column for column in master_catalogue.colnames\n", + " if 'flag_gaia' in column]\n", + "\n", + "master_catalogue.add_column(Column(\n", + " data=np.max([master_catalogue[column] for column in flag_gaia_columns], axis=0),\n", + " name=\"flag_gaia\"\n", + "))\n", + "master_catalogue.remove_columns(flag_gaia_columns)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Each prisitine catalogue may contain one or several stellarity columns indicating the probability (0 to 1) of each source being a star. We merge these columns taking the highest value. We keep trace of the origin of the stellarity." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "candels_stellarity, wirds_stellarity, cfhtls-wide_stellarity, cfhtls-deep_stellarity, hsc-wide_stellarity, hsc-deep_stellarity, hsc-udeep_stellarity, sparcs_stellarity, dxs_stellarity, uds_stellarity, video_stellarity, vhs_stellarity, viking_stellarity\n" + ] + } + ], + "source": [ + "stellarity_columns = [column for column in master_catalogue.colnames\n", + " if 'stellarity' in column]\n", + "\n", + "print(\", \".join(stellarity_columns))" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "\n", + "# We create an masked array with all the stellarities and get the maximum value, as well as its\n", + "# origin. Some sources may not have an associated stellarity.\n", + "stellarity_array = np.array([master_catalogue[column] for column in stellarity_columns])\n", + "stellarity_array = np.ma.masked_array(stellarity_array, np.isnan(stellarity_array))\n", + "\n", + "max_stellarity = np.max(stellarity_array, axis=0)\n", + "max_stellarity.fill_value = np.nan\n", + "\n", + "no_stellarity_mask = max_stellarity.mask\n", + "\n", + "master_catalogue.add_column(Column(data=max_stellarity.filled(), name=\"stellarity\"))\n", + "\n", + "stellarity_origin = np.full(len(master_catalogue), \"NO_INFORMATION\", dtype=\"S20\")\n", + "stellarity_origin[~no_stellarity_mask] = np.array(stellarity_columns)[np.argmax(stellarity_array, axis=0)[~no_stellarity_mask]]\n", + "\n", + "master_catalogue.add_column(Column(data=stellarity_origin, name=\"stellarity_origin\"))\n", + "\n", + "master_catalogue.remove_columns(stellarity_columns)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## IV - Adding E(B-V) column" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "master_catalogue.add_column(\n", + " ebv(master_catalogue['ra'], master_catalogue['dec'])\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## V - Adding HELP unique identifiers and field columns" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "master_catalogue.add_column(Column(gen_help_id(master_catalogue['ra'], master_catalogue['dec']),\n", + " name=\"help_id\"))\n", + "master_catalogue.add_column(Column(np.full(len(master_catalogue), \"ELAIS-N1\", dtype='" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nb_merge_dist_plot(\n", + " SkyCoord(master_catalogue['ra'], master_catalogue['dec']),\n", + " SkyCoord(specz['ra'] * u.deg, specz['dec'] * u.deg)\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "master_catalogue = specz_merge(master_catalogue, specz, radius=1. * u.arcsec)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## VII - Choosing between multiple values for the same filter\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### VII.a SERVS and SWIRE IRAC fluxes\n", + "\n", + "Both SERVS and SWIRE provide IRAC1 and IRAC2 fluxes. SERVS is deeper but tends to under-estimate flux of bright sources (Mattia said over 2000 µJy) as illustrated by this comparison of SWIRE, SERVS, and Spitzer-EIP fluxes." + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'seip = Table.read(\"../../dmu0/dmu0_SEIP/data/SEIP_XMM-LSS.fits\")\\nseip_coords = SkyCoord(seip[\\'ra\\'], seip[\\'dec\\'])\\nidx, d2d, _ = seip_coords.match_to_catalog_sky(SkyCoord(master_catalogue[\\'ra\\'], master_catalogue[\\'dec\\']))\\nmask = d2d <= 2 * u.arcsec'" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\"\"\"seip = Table.read(\"../../dmu0/dmu0_SEIP/data/SEIP_XMM-LSS.fits\")\n", + "seip_coords = SkyCoord(seip['ra'], seip['dec'])\n", + "idx, d2d, _ = seip_coords.match_to_catalog_sky(SkyCoord(master_catalogue['ra'], master_catalogue['dec']))\n", + "mask = d2d <= 2 * u.arcsec\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'fig, ax = plt.subplots()\\nax.scatter(seip[\\'i1_f_ap1\\'][mask], master_catalogue[idx[mask]][\\'f_ap_servs_irac_i1\\'], label=\"SERVS\", s=2.)\\nax.scatter(seip[\\'i1_f_ap1\\'][mask], master_catalogue[idx[mask]][\\'f_ap_swire_irac_i1\\'], label=\"SWIRE\", s=2.)\\nax.set_xscale(\\'log\\')\\nax.set_yscale(\\'log\\')\\nax.set_xlabel(\"SEIP flux [μJy]\")\\nax.set_ylabel(\"SERVS/SWIRE flux [μJy]\")\\nax.set_title(\"IRAC 1\")\\nax.legend()\\nax.axvline(2000, color=\"black\", linestyle=\"--\", linewidth=1.)\\nax.plot(seip[\\'i1_f_ap1\\'][mask], seip[\\'i1_f_ap1\\'][mask], linewidth=.1, color=\"black\", alpha=.5);'" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\"\"\"fig, ax = plt.subplots()\n", + "ax.scatter(seip['i1_f_ap1'][mask], master_catalogue[idx[mask]]['f_ap_servs_irac_i1'], label=\"SERVS\", s=2.)\n", + "ax.scatter(seip['i1_f_ap1'][mask], master_catalogue[idx[mask]]['f_ap_swire_irac_i1'], label=\"SWIRE\", s=2.)\n", + "ax.set_xscale('log')\n", + "ax.set_yscale('log')\n", + "ax.set_xlabel(\"SEIP flux [μJy]\")\n", + "ax.set_ylabel(\"SERVS/SWIRE flux [μJy]\")\n", + "ax.set_title(\"IRAC 1\")\n", + "ax.legend()\n", + "ax.axvline(2000, color=\"black\", linestyle=\"--\", linewidth=1.)\n", + "ax.plot(seip['i1_f_ap1'][mask], seip['i1_f_ap1'][mask], linewidth=.1, color=\"black\", alpha=.5);\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'fig, ax = plt.subplots()\\nax.scatter(seip[\\'i2_f_ap1\\'][mask], master_catalogue[idx[mask]][\\'f_ap_servs_irac_i2\\'], label=\"SERVS\", s=2.)\\nax.scatter(seip[\\'i2_f_ap1\\'][mask], master_catalogue[idx[mask]][\\'f_ap_swire_irac_i2\\'], label=\"SWIRE\", s=2.)\\nax.set_xscale(\\'log\\')\\nax.set_yscale(\\'log\\')\\nax.set_xlabel(\"SEIP flux [μJy]\")\\nax.set_ylabel(\"SERVS/SWIRE flux [μJy]\")\\nax.set_title(\"IRAC 2\")\\nax.legend()\\nax.axvline(2000, color=\"black\", linestyle=\"--\", linewidth=1.)\\n\\nax.plot(seip[\\'i1_f_ap2\\'][mask], seip[\\'i1_f_ap2\\'][mask], linewidth=.1, color=\"black\", alpha=.5);'" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\"\"\"fig, ax = plt.subplots()\n", + "ax.scatter(seip['i2_f_ap1'][mask], master_catalogue[idx[mask]]['f_ap_servs_irac_i2'], label=\"SERVS\", s=2.)\n", + "ax.scatter(seip['i2_f_ap1'][mask], master_catalogue[idx[mask]]['f_ap_swire_irac_i2'], label=\"SWIRE\", s=2.)\n", + "ax.set_xscale('log')\n", + "ax.set_yscale('log')\n", + "ax.set_xlabel(\"SEIP flux [μJy]\")\n", + "ax.set_ylabel(\"SERVS/SWIRE flux [μJy]\")\n", + "ax.set_title(\"IRAC 2\")\n", + "ax.legend()\n", + "ax.axvline(2000, color=\"black\", linestyle=\"--\", linewidth=1.)\n", + "\n", + "ax.plot(seip['i1_f_ap2'][mask], seip['i1_f_ap2'][mask], linewidth=.1, color=\"black\", alpha=.5);\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When both SWIRE and SERVS fluxes are provided, we use the SERVS flux below 2000 μJy and the SWIRE flux over.\n", + "\n", + "We create a table indicating for each source the origin on the IRAC1 and IRAC2 fluxes that will be saved separately." + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"irac_origin = Table()\\nirac_origin.add_column(master_catalogue['help_id'])\"" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\"\"\"irac_origin = Table()\n", + "irac_origin.add_column(master_catalogue['help_id'])\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'# IRAC1 aperture flux and magnitudes\\nhas_servs = ~np.isnan(master_catalogue[\\'f_ap_servs_irac_i1\\'])\\nhas_swire = ~np.isnan(master_catalogue[\\'f_ap_swire_irac_i1\\'])\\nhas_both = has_servs & has_swire\\n\\nprint(\"{} sources with SERVS flux\".format(np.sum(has_servs)))\\nprint(\"{} sources with SWIRE flux\".format(np.sum(has_swire)))\\nprint(\"{} sources with SERVS and SWIRE flux\".format(np.sum(has_both)))\\n\\nhas_servs_above_limit = has_servs.copy()\\nhas_servs_above_limit[has_servs] = master_catalogue[\\'f_ap_servs_irac_i1\\'][has_servs] > 2000\\n\\nuse_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)\\nuse_servs = (has_servs & ~(has_both & has_servs_above_limit))\\n\\nprint(\"{} sources for which we use SERVS\".format(np.sum(use_servs)))\\nprint(\"{} sources for which we use SWIRE\".format(np.sum(use_swire)))\\n\\nf_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nf_ap_irac_i[use_servs] = master_catalogue[\\'f_ap_servs_irac_i1\\'][use_servs]\\nf_ap_irac_i[use_swire] = master_catalogue[\\'f_ap_swire_irac_i1\\'][use_swire]\\n\\nferr_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nferr_ap_irac_i[use_servs] = master_catalogue[\\'ferr_ap_servs_irac_i1\\'][use_servs]\\nferr_ap_irac_i[use_swire] = master_catalogue[\\'ferr_ap_swire_irac_i1\\'][use_swire]\\n\\nm_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nm_ap_irac_i[use_servs] = master_catalogue[\\'m_ap_servs_irac_i1\\'][use_servs]\\nm_ap_irac_i[use_swire] = master_catalogue[\\'m_ap_swire_irac_i1\\'][use_swire]\\n\\nmerr_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nmerr_ap_irac_i[use_servs] = master_catalogue[\\'merr_ap_servs_irac_i1\\'][use_servs]\\nmerr_ap_irac_i[use_swire] = master_catalogue[\\'merr_ap_swire_irac_i1\\'][use_swire]\\n\\nmaster_catalogue.add_column(Column(data=f_ap_irac_i, name=\"f_ap_irac_i1\"))\\nmaster_catalogue.add_column(Column(data=ferr_ap_irac_i, name=\"ferr_ap_irac_i1\"))\\nmaster_catalogue.add_column(Column(data=m_ap_irac_i, name=\"m_ap_irac_i1\"))\\nmaster_catalogue.add_column(Column(data=merr_ap_irac_i, name=\"merr_ap_irac_i1\"))\\n\\nmaster_catalogue.remove_columns([\\'f_ap_servs_irac_i1\\', \\'f_ap_swire_irac_i1\\', \\'ferr_ap_servs_irac_i1\\',\\n \\'ferr_ap_swire_irac_i1\\', \\'m_ap_servs_irac_i1\\', \\'m_ap_swire_irac_i1\\',\\n \\'merr_ap_servs_irac_i1\\', \\'merr_ap_swire_irac_i1\\'])\\n\\norigin = np.full(len(master_catalogue), \\' \\', dtype=\\' 2000\n", + "\n", + "use_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)\n", + "use_servs = (has_servs & ~(has_both & has_servs_above_limit))\n", + "\n", + "print(\"{} sources for which we use SERVS\".format(np.sum(use_servs)))\n", + "print(\"{} sources for which we use SWIRE\".format(np.sum(use_swire)))\n", + "\n", + "f_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "f_ap_irac_i[use_servs] = master_catalogue['f_ap_servs_irac_i1'][use_servs]\n", + "f_ap_irac_i[use_swire] = master_catalogue['f_ap_swire_irac_i1'][use_swire]\n", + "\n", + "ferr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "ferr_ap_irac_i[use_servs] = master_catalogue['ferr_ap_servs_irac_i1'][use_servs]\n", + "ferr_ap_irac_i[use_swire] = master_catalogue['ferr_ap_swire_irac_i1'][use_swire]\n", + "\n", + "m_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "m_ap_irac_i[use_servs] = master_catalogue['m_ap_servs_irac_i1'][use_servs]\n", + "m_ap_irac_i[use_swire] = master_catalogue['m_ap_swire_irac_i1'][use_swire]\n", + "\n", + "merr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "merr_ap_irac_i[use_servs] = master_catalogue['merr_ap_servs_irac_i1'][use_servs]\n", + "merr_ap_irac_i[use_swire] = master_catalogue['merr_ap_swire_irac_i1'][use_swire]\n", + "\n", + "master_catalogue.add_column(Column(data=f_ap_irac_i, name=\"f_ap_irac_i1\"))\n", + "master_catalogue.add_column(Column(data=ferr_ap_irac_i, name=\"ferr_ap_irac_i1\"))\n", + "master_catalogue.add_column(Column(data=m_ap_irac_i, name=\"m_ap_irac_i1\"))\n", + "master_catalogue.add_column(Column(data=merr_ap_irac_i, name=\"merr_ap_irac_i1\"))\n", + "\n", + "master_catalogue.remove_columns(['f_ap_servs_irac_i1', 'f_ap_swire_irac_i1', 'ferr_ap_servs_irac_i1',\n", + " 'ferr_ap_swire_irac_i1', 'm_ap_servs_irac_i1', 'm_ap_swire_irac_i1',\n", + " 'merr_ap_servs_irac_i1', 'merr_ap_swire_irac_i1'])\n", + "\n", + "origin = np.full(len(master_catalogue), ' ', dtype=' 2000\\n\\nuse_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)\\nuse_servs = (has_servs & ~(has_both & has_servs_above_limit))\\n\\nprint(\"{} sources for which we use SERVS\".format(np.sum(use_servs)))\\nprint(\"{} sources for which we use SWIRE\".format(np.sum(use_swire)))\\n\\nf_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nf_ap_irac_i[use_servs] = master_catalogue[\\'f_servs_irac_i1\\'][use_servs]\\nf_ap_irac_i[use_swire] = master_catalogue[\\'f_swire_irac_i1\\'][use_swire]\\n\\nferr_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nferr_ap_irac_i[use_servs] = master_catalogue[\\'ferr_servs_irac_i1\\'][use_servs]\\nferr_ap_irac_i[use_swire] = master_catalogue[\\'ferr_swire_irac_i1\\'][use_swire]\\n\\nflag_irac_i = np.full(len(master_catalogue), False, dtype=bool)\\nflag_irac_i[use_servs] = master_catalogue[\\'flag_servs_irac_i1\\'][use_servs]\\nflag_irac_i[use_swire] = master_catalogue[\\'flag_swire_irac_i1\\'][use_swire]\\n\\nm_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nm_ap_irac_i[use_servs] = master_catalogue[\\'m_servs_irac_i1\\'][use_servs]\\nm_ap_irac_i[use_swire] = master_catalogue[\\'m_swire_irac_i1\\'][use_swire]\\n\\nmerr_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nmerr_ap_irac_i[use_servs] = master_catalogue[\\'merr_servs_irac_i1\\'][use_servs]\\nmerr_ap_irac_i[use_swire] = master_catalogue[\\'merr_swire_irac_i1\\'][use_swire]\\n\\nmaster_catalogue.add_column(Column(data=f_ap_irac_i, name=\"f_irac_i1\"))\\nmaster_catalogue.add_column(Column(data=ferr_ap_irac_i, name=\"ferr_irac_i1\"))\\nmaster_catalogue.add_column(Column(data=m_ap_irac_i, name=\"m_irac_i1\"))\\nmaster_catalogue.add_column(Column(data=merr_ap_irac_i, name=\"merr_irac_i1\"))\\nmaster_catalogue.add_column(Column(data=flag_irac_i, name=\"flag_irac_i1\"))\\n\\nmaster_catalogue.remove_columns([\\'f_servs_irac_i1\\', \\'f_swire_irac_i1\\', \\'ferr_servs_irac_i1\\',\\n \\'ferr_swire_irac_i1\\', \\'m_servs_irac_i1\\', \\'flag_servs_irac_i1\\', \\'m_swire_irac_i1\\',\\n \\'merr_servs_irac_i1\\', \\'merr_swire_irac_i1\\', \\'flag_swire_irac_i1\\'])\\n\\norigin = np.full(len(master_catalogue), \\' \\', dtype=\\' 2000\n", + "\n", + "use_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)\n", + "use_servs = (has_servs & ~(has_both & has_servs_above_limit))\n", + "\n", + "print(\"{} sources for which we use SERVS\".format(np.sum(use_servs)))\n", + "print(\"{} sources for which we use SWIRE\".format(np.sum(use_swire)))\n", + "\n", + "f_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "f_ap_irac_i[use_servs] = master_catalogue['f_servs_irac_i1'][use_servs]\n", + "f_ap_irac_i[use_swire] = master_catalogue['f_swire_irac_i1'][use_swire]\n", + "\n", + "ferr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "ferr_ap_irac_i[use_servs] = master_catalogue['ferr_servs_irac_i1'][use_servs]\n", + "ferr_ap_irac_i[use_swire] = master_catalogue['ferr_swire_irac_i1'][use_swire]\n", + "\n", + "flag_irac_i = np.full(len(master_catalogue), False, dtype=bool)\n", + "flag_irac_i[use_servs] = master_catalogue['flag_servs_irac_i1'][use_servs]\n", + "flag_irac_i[use_swire] = master_catalogue['flag_swire_irac_i1'][use_swire]\n", + "\n", + "m_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "m_ap_irac_i[use_servs] = master_catalogue['m_servs_irac_i1'][use_servs]\n", + "m_ap_irac_i[use_swire] = master_catalogue['m_swire_irac_i1'][use_swire]\n", + "\n", + "merr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "merr_ap_irac_i[use_servs] = master_catalogue['merr_servs_irac_i1'][use_servs]\n", + "merr_ap_irac_i[use_swire] = master_catalogue['merr_swire_irac_i1'][use_swire]\n", + "\n", + "master_catalogue.add_column(Column(data=f_ap_irac_i, name=\"f_irac_i1\"))\n", + "master_catalogue.add_column(Column(data=ferr_ap_irac_i, name=\"ferr_irac_i1\"))\n", + "master_catalogue.add_column(Column(data=m_ap_irac_i, name=\"m_irac_i1\"))\n", + "master_catalogue.add_column(Column(data=merr_ap_irac_i, name=\"merr_irac_i1\"))\n", + "master_catalogue.add_column(Column(data=flag_irac_i, name=\"flag_irac_i1\"))\n", + "\n", + "master_catalogue.remove_columns(['f_servs_irac_i1', 'f_swire_irac_i1', 'ferr_servs_irac_i1',\n", + " 'ferr_swire_irac_i1', 'm_servs_irac_i1', 'flag_servs_irac_i1', 'm_swire_irac_i1',\n", + " 'merr_servs_irac_i1', 'merr_swire_irac_i1', 'flag_swire_irac_i1'])\n", + "\n", + "origin = np.full(len(master_catalogue), ' ', dtype=' 2000\\n\\nuse_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)\\nuse_servs = (has_servs & ~(has_both & has_servs_above_limit))\\n\\nprint(\"{} sources for which we use SERVS\".format(np.sum(use_servs)))\\nprint(\"{} sources for which we use SWIRE\".format(np.sum(use_swire)))\\n\\nf_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nf_ap_irac_i[use_servs] = master_catalogue[\\'f_ap_servs_irac_i2\\'][use_servs]\\nf_ap_irac_i[use_swire] = master_catalogue[\\'f_ap_swire_irac_i2\\'][use_swire]\\n\\nferr_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nferr_ap_irac_i[use_servs] = master_catalogue[\\'ferr_ap_servs_irac_i2\\'][use_servs]\\nferr_ap_irac_i[use_swire] = master_catalogue[\\'ferr_ap_swire_irac_i2\\'][use_swire]\\n\\nm_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nm_ap_irac_i[use_servs] = master_catalogue[\\'m_ap_servs_irac_i2\\'][use_servs]\\nm_ap_irac_i[use_swire] = master_catalogue[\\'m_ap_swire_irac_i2\\'][use_swire]\\n\\nmerr_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nmerr_ap_irac_i[use_servs] = master_catalogue[\\'merr_ap_servs_irac_i2\\'][use_servs]\\nmerr_ap_irac_i[use_swire] = master_catalogue[\\'merr_ap_swire_irac_i2\\'][use_swire]\\n\\nmaster_catalogue.add_column(Column(data=f_ap_irac_i, name=\"f_ap_irac_i2\"))\\nmaster_catalogue.add_column(Column(data=ferr_ap_irac_i, name=\"ferr_ap_irac_i2\"))\\nmaster_catalogue.add_column(Column(data=m_ap_irac_i, name=\"m_ap_irac_i2\"))\\nmaster_catalogue.add_column(Column(data=merr_ap_irac_i, name=\"merr_ap_irac_i2\"))\\n\\nmaster_catalogue.remove_columns([\\'f_ap_servs_irac_i2\\', \\'f_ap_swire_irac_i2\\', \\'ferr_ap_servs_irac_i2\\',\\n \\'ferr_ap_swire_irac_i2\\', \\'m_ap_servs_irac_i2\\', \\'m_ap_swire_irac_i2\\',\\n \\'merr_ap_servs_irac_i2\\', \\'merr_ap_swire_irac_i2\\'])\\n\\norigin = np.full(len(master_catalogue), \\' \\', dtype=\\' 2000\n", + "\n", + "use_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)\n", + "use_servs = (has_servs & ~(has_both & has_servs_above_limit))\n", + "\n", + "print(\"{} sources for which we use SERVS\".format(np.sum(use_servs)))\n", + "print(\"{} sources for which we use SWIRE\".format(np.sum(use_swire)))\n", + "\n", + "f_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "f_ap_irac_i[use_servs] = master_catalogue['f_ap_servs_irac_i2'][use_servs]\n", + "f_ap_irac_i[use_swire] = master_catalogue['f_ap_swire_irac_i2'][use_swire]\n", + "\n", + "ferr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "ferr_ap_irac_i[use_servs] = master_catalogue['ferr_ap_servs_irac_i2'][use_servs]\n", + "ferr_ap_irac_i[use_swire] = master_catalogue['ferr_ap_swire_irac_i2'][use_swire]\n", + "\n", + "m_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "m_ap_irac_i[use_servs] = master_catalogue['m_ap_servs_irac_i2'][use_servs]\n", + "m_ap_irac_i[use_swire] = master_catalogue['m_ap_swire_irac_i2'][use_swire]\n", + "\n", + "merr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "merr_ap_irac_i[use_servs] = master_catalogue['merr_ap_servs_irac_i2'][use_servs]\n", + "merr_ap_irac_i[use_swire] = master_catalogue['merr_ap_swire_irac_i2'][use_swire]\n", + "\n", + "master_catalogue.add_column(Column(data=f_ap_irac_i, name=\"f_ap_irac_i2\"))\n", + "master_catalogue.add_column(Column(data=ferr_ap_irac_i, name=\"ferr_ap_irac_i2\"))\n", + "master_catalogue.add_column(Column(data=m_ap_irac_i, name=\"m_ap_irac_i2\"))\n", + "master_catalogue.add_column(Column(data=merr_ap_irac_i, name=\"merr_ap_irac_i2\"))\n", + "\n", + "master_catalogue.remove_columns(['f_ap_servs_irac_i2', 'f_ap_swire_irac_i2', 'ferr_ap_servs_irac_i2',\n", + " 'ferr_ap_swire_irac_i2', 'm_ap_servs_irac_i2', 'm_ap_swire_irac_i2',\n", + " 'merr_ap_servs_irac_i2', 'merr_ap_swire_irac_i2'])\n", + "\n", + "origin = np.full(len(master_catalogue), ' ', dtype=' 2000\\n\\nuse_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)\\nuse_servs = (has_servs & ~(has_both & has_servs_above_limit))\\n\\nprint(\"{} sources for which we use SERVS\".format(np.sum(use_servs)))\\nprint(\"{} sources for which we use SWIRE\".format(np.sum(use_swire)))\\n\\nf_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nf_ap_irac_i[use_servs] = master_catalogue[\\'f_servs_irac_i2\\'][use_servs]\\nf_ap_irac_i[use_swire] = master_catalogue[\\'f_swire_irac_i2\\'][use_swire]\\n\\nferr_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nferr_ap_irac_i[use_servs] = master_catalogue[\\'ferr_servs_irac_i2\\'][use_servs]\\nferr_ap_irac_i[use_swire] = master_catalogue[\\'ferr_swire_irac_i2\\'][use_swire]\\n\\nflag_irac_i = np.full(len(master_catalogue), False, dtype=bool)\\nflag_irac_i[use_servs] = master_catalogue[\\'flag_servs_irac_i2\\'][use_servs]\\nflag_irac_i[use_swire] = master_catalogue[\\'flag_swire_irac_i2\\'][use_swire]\\n\\nm_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nm_ap_irac_i[use_servs] = master_catalogue[\\'m_servs_irac_i2\\'][use_servs]\\nm_ap_irac_i[use_swire] = master_catalogue[\\'m_swire_irac_i2\\'][use_swire]\\n\\nmerr_ap_irac_i = np.full(len(master_catalogue), np.nan)\\nmerr_ap_irac_i[use_servs] = master_catalogue[\\'merr_servs_irac_i2\\'][use_servs]\\nmerr_ap_irac_i[use_swire] = master_catalogue[\\'merr_swire_irac_i2\\'][use_swire]\\n\\nmaster_catalogue.add_column(Column(data=f_ap_irac_i, name=\"f_irac_i2\"))\\nmaster_catalogue.add_column(Column(data=ferr_ap_irac_i, name=\"ferr_irac_i2\"))\\nmaster_catalogue.add_column(Column(data=m_ap_irac_i, name=\"m_irac_i2\"))\\nmaster_catalogue.add_column(Column(data=merr_ap_irac_i, name=\"merr_irac_i2\"))\\nmaster_catalogue.add_column(Column(data=flag_irac_i, name=\"flag_irac_i2\"))\\n\\nmaster_catalogue.remove_columns([\\'f_servs_irac_i2\\', \\'f_swire_irac_i2\\', \\'ferr_servs_irac_i2\\',\\n \\'ferr_swire_irac_i2\\', \\'m_servs_irac_i2\\', \\'flag_servs_irac_i2\\', \\'m_swire_irac_i2\\',\\n \\'merr_servs_irac_i2\\', \\'merr_swire_irac_i2\\', \\'flag_swire_irac_i2\\'])\\n\\norigin = np.full(len(master_catalogue), \\' \\', dtype=\\' 2000\n", + "\n", + "use_swire = (has_swire & ~has_servs) | (has_both & has_servs_above_limit)\n", + "use_servs = (has_servs & ~(has_both & has_servs_above_limit))\n", + "\n", + "print(\"{} sources for which we use SERVS\".format(np.sum(use_servs)))\n", + "print(\"{} sources for which we use SWIRE\".format(np.sum(use_swire)))\n", + "\n", + "f_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "f_ap_irac_i[use_servs] = master_catalogue['f_servs_irac_i2'][use_servs]\n", + "f_ap_irac_i[use_swire] = master_catalogue['f_swire_irac_i2'][use_swire]\n", + "\n", + "ferr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "ferr_ap_irac_i[use_servs] = master_catalogue['ferr_servs_irac_i2'][use_servs]\n", + "ferr_ap_irac_i[use_swire] = master_catalogue['ferr_swire_irac_i2'][use_swire]\n", + "\n", + "flag_irac_i = np.full(len(master_catalogue), False, dtype=bool)\n", + "flag_irac_i[use_servs] = master_catalogue['flag_servs_irac_i2'][use_servs]\n", + "flag_irac_i[use_swire] = master_catalogue['flag_swire_irac_i2'][use_swire]\n", + "\n", + "m_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "m_ap_irac_i[use_servs] = master_catalogue['m_servs_irac_i2'][use_servs]\n", + "m_ap_irac_i[use_swire] = master_catalogue['m_swire_irac_i2'][use_swire]\n", + "\n", + "merr_ap_irac_i = np.full(len(master_catalogue), np.nan)\n", + "merr_ap_irac_i[use_servs] = master_catalogue['merr_servs_irac_i2'][use_servs]\n", + "merr_ap_irac_i[use_swire] = master_catalogue['merr_swire_irac_i2'][use_swire]\n", + "\n", + "master_catalogue.add_column(Column(data=f_ap_irac_i, name=\"f_irac_i2\"))\n", + "master_catalogue.add_column(Column(data=ferr_ap_irac_i, name=\"ferr_irac_i2\"))\n", + "master_catalogue.add_column(Column(data=m_ap_irac_i, name=\"m_irac_i2\"))\n", + "master_catalogue.add_column(Column(data=merr_ap_irac_i, name=\"merr_irac_i2\"))\n", + "master_catalogue.add_column(Column(data=flag_irac_i, name=\"flag_irac_i2\"))\n", + "\n", + "master_catalogue.remove_columns(['f_servs_irac_i2', 'f_swire_irac_i2', 'ferr_servs_irac_i2',\n", + " 'ferr_swire_irac_i2', 'm_servs_irac_i2', 'flag_servs_irac_i2', 'm_swire_irac_i2',\n", + " 'merr_servs_irac_i2', 'merr_swire_irac_i2', 'flag_swire_irac_i2'])\n", + "\n", + "origin = np.full(len(master_catalogue), ' ', dtype='= 2\n", + "has_nir_flux = nb_nir_flux >= 2\n", + "has_mir_flux = nb_mir_flux >= 2\n", + "\n", + "master_catalogue.add_column(\n", + " Column(\n", + " 1 * has_optical_flux + 2 * has_nir_flux + 4 * has_mir_flux,\n", + " name=\"flag_optnir_det\")\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## IX - Cross-identification table\n", + "\n", + "We are producing a table associating to each HELP identifier, the identifiers of the sources in the pristine catalogues. This can be used to easily get additional information from them.\n", + "\n", + "For convenience, we also cross-match the master list with the SDSS catalogue and add the objID associated with each source, if any. **TODO: should we correct the astrometry with respect to Gaia positions?**" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "8 master list rows had multiple associations.\n" + ] + } + ], + "source": [ + "#\n", + "# Addind SDSS ids\n", + "#\n", + "sdss = Table.read(\"../../dmu0/dmu0_SDSS-DR13/data/SDSS-DR13_XMM-LSS.fits\")['objID', 'ra', 'dec']\n", + "sdss_coords = SkyCoord(sdss['ra'] * u.deg, sdss['dec'] * u.deg)\n", + "idx_ml, d2d, _ = sdss_coords.match_to_catalog_sky(SkyCoord(master_catalogue['ra'], master_catalogue['dec']))\n", + "idx_sdss = np.arange(len(sdss))\n", + "\n", + "# Limit the cross-match to 1 arcsec\n", + "mask = d2d <= 1. * u.arcsec\n", + "idx_ml = idx_ml[mask]\n", + "idx_sdss = idx_sdss[mask]\n", + "d2d = d2d[mask]\n", + "nb_orig_matches = len(idx_ml)\n", + "\n", + "# In case of multiple associations of one master list object to an SDSS object, we keep only the\n", + "# association to the nearest one.\n", + "sort_idx = np.argsort(d2d)\n", + "idx_ml = idx_ml[sort_idx]\n", + "idx_sdss = idx_sdss[sort_idx]\n", + "_, unique_idx = np.unique(idx_ml, return_index=True)\n", + "idx_ml = idx_ml[unique_idx]\n", + "idx_sdss = idx_sdss[unique_idx]\n", + "print(\"{} master list rows had multiple associations.\".format(nb_orig_matches - len(idx_ml)))\n", + "\n", + "# Adding the ObjID to the master list\n", + "master_catalogue.add_column(Column(data=np.full(len(master_catalogue), -1, dtype='>i8'), name=\"sdss_id\"))\n", + "master_catalogue['sdss_id'][idx_ml] = sdss['objID'][idx_sdss]" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['ps1_id', 'candels_id', 'wirds_intid', 'cfhtls-wide_id', 'cfhtls-deep_id', 'hsc-wide_id', 'hsc-deep_id', 'hsc-udeep_id', 'decals_id', 'sparcs_intid', 'sxds_b_id', 'dxs_id', 'uds_id', 'vipers_id', 'video_id', 'vhs_id', 'viking_id', 'servs_intid', 'swire_intid', 'help_id', 'specz_id', 'sdss_id']\n" + ] + } + ], + "source": [ + "id_names = []\n", + "for col in master_catalogue.colnames:\n", + " if '_id' in col:\n", + " id_names += [col]\n", + " if '_intid' in col:\n", + " id_names += [col]\n", + " \n", + "print(id_names)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "master_catalogue[id_names].write(\n", + " \"{}/master_list_cross_ident_xmm-lss_low-memory{}.fits\".format(OUT_DIR, SUFFIX))\n", + "id_names.remove('help_id')\n", + "master_catalogue.remove_columns(id_names)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## X - Adding HEALPix index\n", + "\n", + "We are adding a column with a HEALPix index at order 13 associated with each source." + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "master_catalogue.add_column(Column(\n", + " data=coords_to_hpidx(master_catalogue['ra'], master_catalogue['dec'], order=13),\n", + " name=\"hp_idx\"\n", + "))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## XI - Saving the catalogue" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "columns = [\"help_id\", \"field\", \"ra\", \"dec\", \"hp_idx\"]\n", + "\n", + "bands = [column[5:] for column in master_catalogue.colnames if 'f_ap' in column]\n", + "for band in bands:\n", + " columns += [\"f_ap_{}\".format(band), \"ferr_ap_{}\".format(band),\n", + " \"m_ap_{}\".format(band), \"merr_ap_{}\".format(band),\n", + " \"f_{}\".format(band), \"ferr_{}\".format(band),\n", + " \"m_{}\".format(band), \"merr_{}\".format(band),\n", + " \"flag_{}\".format(band)] \n", + " \n", + "columns += [\"stellarity\", \"stellarity_origin\", \"flag_cleaned\", \"flag_merged\", \"flag_gaia\", \"flag_optnir_obs\", \"flag_optnir_det\", \n", + " \"zspec\", \"zspec_qual\", \"zspec_association_flag\", \"ebv\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Missing columns: set()\n" + ] + } + ], + "source": [ + "# We check for columns in the master catalogue that we will not save to disk.\n", + "print(\"Missing columns: {}\".format(set(master_catalogue.colnames) - set(columns)))" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "master_catalogue[columns].write(\"{}/master_catalogue_xmm-lss_low-memory{}.fits\".format(OUT_DIR, SUFFIX))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python (herschelhelp_internal)", + "language": "python", + "name": "helpint" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}