forked from elastic/elasticsearch-dsl-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME
317 lines (212 loc) · 8.98 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
Elasticsearch DSL
=================
Elasticsearch DSL is a high-level library whose aim is to help with writing and
running queries against Elasticsearch. It is built on top of the official
low-level client (`elasticsearch-py <https://github.com/elastic/elasticsearch-py>`_).
It provides a more convenient and idiomatic way to write and manipulate
queries. It stays close to the Elasticsearch JSON DSL, mirroring its
terminology and structure. It exposes the whole range of the DSL from Python
either directly using defined classes or a queryset-like expressions.
It also provides an optional wrapper for working with documents as Python
objects: defining mappings, retrieving and saving documents, wrapping the
document data in user-defined classes.
To use the other Elasticsearch APIs (eg. cluster health) just use the
underlying client.
Installation
------------
::
pip install elasticsearch-dsl
Examples
--------
Please see the `examples
<https://github.com/elastic/elasticsearch-dsl-py/tree/master/examples>`_
directory to see some complex examples using ``elasticsearch-dsl``.
Compatibility
-------------
The library is compatible with all Elasticsearch versions since ``2.x`` but you
**have to use a matching major version**:
For **Elasticsearch 7.0** and later, use the major version 7 (``7.x.y``) of the
library.
For **Elasticsearch 6.0** and later, use the major version 6 (``6.x.y``) of the
library.
For **Elasticsearch 5.0** and later, use the major version 5 (``5.x.y``) of the
library.
For **Elasticsearch 2.0** and later, use the major version 2 (``2.x.y``) of the
library.
The recommended way to set your requirements in your `setup.py` or
`requirements.txt` is::
# Elasticsearch 7.x
elasticsearch-dsl>=7.0.0,<8.0.0
# Elasticsearch 6.x
elasticsearch-dsl>=6.0.0,<7.0.0
# Elasticsearch 5.x
elasticsearch-dsl>=5.0.0,<6.0.0
# Elasticsearch 2.x
elasticsearch-dsl>=2.0.0,<3.0.0
The development is happening on ``master``, older branches only get bugfix releases
Search Example
--------------
Let's have a typical search request written directly as a ``dict``:
.. code:: python
from elasticsearch import Elasticsearch
client = Elasticsearch()
response = client.search(
index="my-index",
body={
"query": {
"bool": {
"must": [{"match": {"title": "python"}}],
"must_not": [{"match": {"description": "beta"}}],
"filter": [{"term": {"category": "search"}}]
}
},
"aggs" : {
"per_tag": {
"terms": {"field": "tags"},
"aggs": {
"max_lines": {"max": {"field": "lines"}}
}
}
}
}
)
for hit in response['hits']['hits']:
print(hit['_score'], hit['_source']['title'])
for tag in response['aggregations']['per_tag']['buckets']:
print(tag['key'], tag['max_lines']['value'])
The problem with this approach is that it is very verbose, prone to syntax
mistakes like incorrect nesting, hard to modify (eg. adding another filter) and
definitely not fun to write.
Let's rewrite the example using the Python DSL:
.. code:: python
from elasticsearch import Elasticsearch
from elasticsearch_dsl import Search
client = Elasticsearch()
s = Search(using=client, index="my-index") \
.filter("term", category="search") \
.query("match", title="python") \
.exclude("match", description="beta")
s.aggs.bucket('per_tag', 'terms', field='tags') \
.metric('max_lines', 'max', field='lines')
response = s.execute()
for hit in response:
print(hit.meta.score, hit.title)
for tag in response.aggregations.per_tag.buckets:
print(tag.key, tag.max_lines.value)
As you see, the library took care of:
* creating appropriate ``Query`` objects by name (eq. "match")
* composing queries into a compound ``bool`` query
* putting the ``term`` query in a filter context of the ``bool`` query
* providing a convenient access to response data
* no curly or square brackets everywhere
Persistence Example
-------------------
Let's have a simple Python class representing an article in a blogging system:
.. code:: python
from datetime import datetime
from elasticsearch_dsl import Document, Date, Integer, Keyword, Text, connections
# Define a default Elasticsearch client
connections.create_connection(hosts=['localhost'])
class Article(Document):
title = Text(analyzer='snowball', fields={'raw': Keyword()})
body = Text(analyzer='snowball')
tags = Keyword()
published_from = Date()
lines = Integer()
class Index:
name = 'blog'
settings = {
"number_of_shards": 2,
}
def save(self, ** kwargs):
self.lines = len(self.body.split())
return super(Article, self).save(** kwargs)
def is_published(self):
return datetime.now() > self.published_from
# create the mappings in elasticsearch
Article.init()
# create and save and article
article = Article(meta={'id': 42}, title='Hello world!', tags=['test'])
article.body = ''' looong text '''
article.published_from = datetime.now()
article.save()
article = Article.get(id=42)
print(article.is_published())
# Display cluster health
print(connections.get_connection().cluster.health())
In this example you can see:
* providing a default connection
* defining fields with mapping configuration
* setting index name
* defining custom methods
* overriding the built-in ``.save()`` method to hook into the persistence
life cycle
* retrieving and saving the object into Elasticsearch
* accessing the underlying client for other APIs
You can see more in the persistence chapter of the documentation.
Migration from ``elasticsearch-py``
-----------------------------------
You don't have to port your entire application to get the benefits of the
Python DSL, you can start gradually by creating a ``Search`` object from your
existing ``dict``, modifying it using the API and serializing it back to a
``dict``:
.. code:: python
body = {...} # insert complicated query here
# Convert to Search object
s = Search.from_dict(body)
# Add some filters, aggregations, queries, ...
s.filter("term", tags="python")
# Convert back to dict to plug back into existing code
body = s.to_dict()
Development
-----------
Activate Virtual Environment (`virtualenvs <http://docs.python-guide.org/en/latest/dev/virtualenvs/>`_):
.. code:: bash
$ virtualenv venv
$ source venv/bin/activate
To install all of the dependencies necessary for development, run:
.. code:: bash
$ pip install -e '.[develop]'
To run all of the tests for ``elasticsearch-dsl-py``, run:
.. code:: bash
$ python setup.py test
Alternatively, it is possible to use the ``run_tests.py`` script in
``test_elasticsearch_dsl``, which wraps `pytest
<http://doc.pytest.org/en/latest/>`_, to run subsets of the test suite. Some
examples can be seen below:
.. code:: bash
# Run all of the tests in `test_elasticsearch_dsl/test_analysis.py`
$ ./run_tests.py test_analysis.py
# Run only the `test_analyzer_serializes_as_name` test.
$ ./run_tests.py test_analysis.py::test_analyzer_serializes_as_name
``pytest`` will skip tests from ``test_elasticsearch_dsl/test_integration``
unless there is an instance of Elasticsearch on which a connection can occur.
By default, the test connection is attempted at ``localhost:9200``, based on
the defaults specified in the ``elasticsearch-py`` `Connection
<https://github.com/elastic/elasticsearch-py/blob/master/elasticsearch
/connection/base.py#L29>`_ class. **Because running the integration
tests will cause destructive changes to the Elasticsearch cluster, only run
them when the associated cluster is empty.** As such, if the
Elasticsearch instance at ``localhost:9200`` does not meet these requirements,
it is possible to specify a different test Elasticsearch server through the
``TEST_ES_SERVER`` environment variable.
.. code:: bash
$ TEST_ES_SERVER=my-test-server:9201 ./run_tests
Documentation
-------------
Documentation is available at https://elasticsearch-dsl.readthedocs.io.
Contribution Guide
------------------
Want to hack on Elasticsearch DSL? Awesome! We have `Contribution-Guide <https://github.com/elastic/elasticsearch-dsl-py/blob/master/CONTRIBUTING.rst>`_.
License
-------
Copyright 2013 Elasticsearch
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.