-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathattacker_models.py
247 lines (200 loc) · 7.84 KB
/
attacker_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
#os.environ["CUDA_VISIBLE_DEVICES"] = "3"
import time
import numpy as np
import pandas as pd
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer
from transformers import AdamW
import sys
from sklearn import metrics
batch_size = 32
def read_pt(data_type,use_trans=False):
# make it easier to load into a batch
assert data_type == 'train' or 'dev' or 'test'
if use_trans:
path = 'hidden_'+data_type+'_trans.pt'
else:
path = 'hidden_'+data_type+'.pt'
data = torch.load(path)
X=[]
Y=[]
A=[] #A for attribute infor
D=[]
for idx,dialog_dict in enumerate(data): #for a dialog
input_label = dialog_dict['label'] #list of tensors
persona_list = dialog_dict['persona'] #list of persona int
hidden_tensor = dialog_dict['hidden'] #list of tensors for hidden
if use_trans:
utterance_list = dialog_dict['dial']
for i,d in enumerate(input_label):
X.append(hidden_tensor[i][-1])
Y.append(input_label[i].squeeze())
A.append(persona_list[i])
if use_trans:
D.append(utterance_list[i])
if(use_trans):
return X,Y,A,D
return X,Y,A
class Dataset(Dataset):
def __init__(self, X,Y,A):
self.X = X
self.Y = Y
self.A = A
def __len__(self):
return len(self.X)
def __getitem__(self, index):
sample_X = self.X[index]
sample_Y = self.Y[index]
sample_A = self.A[index]
return sample_X, sample_Y, sample_A
def collate(self, unpacked_data):
return unpacked_data
class model_inv_nn(nn.Module):
def __init__(self,out_num,in_num=1024):
super(model_inv_nn, self).__init__()
self.fc1 = nn.Linear(in_num, out_num)
#self.act = F.softmax()
def forward(self, x):
# x should be of shape (?,1024)
out = self.fc1(x)
#out = F.softmax(self.fc1(x),dim=1)
return out
'''
Model for transformer attackers
'''
class SequenceCrossEntropyLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, logits, targets, mask, label_smoothing=-1, reduce=None):
"""
reduce: None, "batch", "sentence"
"""
return sequence_cross_entropy_with_logits(logits, targets, mask, label_smoothing, reduce)
def sequence_cross_entropy_with_logits(logits, targets, mask, label_smoothing, reduce):
# type: (Tensor, Tensor, Tensor, float, bool)-> Tensor
"""
label_smoothing : ``float``, optional (default = 0.0)
It should be smaller than 1.
"""
# shape : (batch * sequence_length, num_classes)
logits_flat = logits.view(-1, logits.size(-1))
# shape : (batch * sequence_length, num_classes)
log_probs_flat = F.log_softmax(logits_flat, dim=-1)
# shape : (batch * max_len, 1)
targets_flat = targets.view(-1, 1).long()
if label_smoothing > 0.0:
num_classes = logits.size(-1)
smoothing_value = label_smoothing / float(num_classes)
# Fill all the correct indices with 1 - smoothing value.
one_hot_targets = torch.zeros_like(log_probs_flat).scatter_(-1, targets_flat, 1.0 - label_smoothing)
smoothed_targets = one_hot_targets + smoothing_value
negative_log_likelihood_flat = -log_probs_flat * smoothed_targets
negative_log_likelihood_flat = negative_log_likelihood_flat.sum(-1, keepdim=True)
else:
# shape : (batch * sequence_length, 1)
negative_log_likelihood_flat = - torch.gather(log_probs_flat, dim=1, index=targets_flat)
# shape : (batch, sequence_length)
negative_log_likelihood = negative_log_likelihood_flat.view(-1, logits.shape[1])
# shape : (batch, sequence_length)
loss = negative_log_likelihood * mask
if reduce:
# shape : (batch,)
loss = loss.sum(1) / (mask.sum(1) + 1e-13)
if reduce is "batch":
# shape : scalar
loss = loss.mean()
return loss
class Dataset_trans(Dataset):
def __init__(self, X,Y,A,D):
self.X = X
self.Y = Y
self.A = A
self.D = D
def __len__(self):
return len(self.X)
def __getitem__(self, index):
sample_X = self.X[index]
sample_Y = self.Y[index]
sample_A = self.A[index]
sample_D = self.D[index]
return sample_X, sample_Y, sample_A,sample_D
def collate(self, unpacked_data):
return unpacked_data
def train_on_batch(batch_X, batch_Y,batch_A,model,optimizer,criterion):
optimizer.zero_grad()
output = model(batch_X)
loss = criterion(output, batch_Y)
loss.backward()
optimizer.step()
print(f'loss: {loss.item()}')
def evaluation(dataloader,model,criterion):
loss_list = []
predict = []
ground_truth = []
count = 0
with torch.no_grad():
for (batch_X, batch_Y,batch_A) in dataloader:
print(f'count:{count}')
batch_size = batch_X.size()[0]
label_size = batch_Y.size()[1]
# move to gpu
batch_X = batch_X.cuda()
batch_Y = batch_Y.cuda()
batch_A = batch_A.cuda()
output = model(batch_X)
m = nn.Sigmoid()
batch_out = m(output)
batch_out[batch_out>=0.5] = 1
batch_out[batch_out<0.5] = 0
#eval_metrics(batch_out,batch_Y) ### what we want
loss = criterion(output, batch_Y)
loss_val = loss.item()
loss_list.append(loss_val*batch_size)
predict.extend(batch_out.cpu().detach().numpy())
ground_truth.extend(batch_Y.cpu().detach().numpy())
count +=1
avg_loss = np.mean(loss_list)
predict = np.array(predict)
ground_truth = np.array(ground_truth)
report_score(ground_truth,predict)
print(f'avg_loss: {avg_loss}')
def report_score(y_true,y_pred):
# micro result should be reported
print("micro precision_score: {:.2f}".format(metrics.precision_score(y_true, y_pred, average='micro')))
print("macro precision_score: {:.2f} ".format( metrics.precision_score(y_true, y_pred, average='macro')))
print('=='*20)
print("micro recall_score: {:.2f}".format(metrics.recall_score(y_true, y_pred, average='micro')))
print("macro recall_score: {:.2f} ".format( metrics.recall_score(y_true, y_pred, average='macro')))
print('=='*20)
print("micro f1_score: {:.2f}".format(metrics.f1_score(y_true, y_pred, average='micro')))
print("macro f1_score: {:.2f} ".format( metrics.f1_score(y_true, y_pred, average='macro')))
if __name__ == '__main__':
print('main file')
data_type = 'dev'
device = torch.device("cuda")
X,Y,A = read_pt(data_type)
train_dataset = Dataset(X,Y,A)
#batch_size = batch_size
external_criterion = nn.BCEWithLogitsLoss()
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
token_num = len(tokenizer)
inv_model = model_inv_nn(out_num=token_num)
inv_model.to(device)
optimizer = torch.optim.Adam(inv_model.parameters(),
lr=3e-5,
eps=1e-06)
train_dataloader = DataLoader(dataset=train_dataset,
shuffle=True,
batch_size=batch_size)
#dataloader help covert batch into tensors
for (batch_X, batch_Y,batch_A) in train_dataloader:
#print(batch_X.size()) [batch, 1024]
#print(batch_Y.size()) [batch, 50257]
#print(batch_A.size()) [batch]
train_on_batch(batch_X.cuda(), batch_Y.cuda(),batch_A.cuda(),inv_model,optimizer,external_criterion)