-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample.sh
70 lines (60 loc) · 2.16 KB
/
example.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
########################################################################
####################### Example Training Scripts #######################
########################################################################
#Training GQE on FB15k-237
CUDA_VISIBLE_DEVICES=0 python ../model/train.py \
-dn FB15k-237-betae \
-m gqe \
--train_query_dir /DIR/sampled_data_29_train \
--valid_query_dir /DIR/sampled_data_58_valid \
--test_query_dir /DIR/sampled_data_58_test \
--checkpoint_path /DIR/kg_reasoning_logs \
-b 8192
#Training Q2P on FB15k, add "fol" to train model on First-order logic queries
CUDA_VISIBLE_DEVICES=0 python ../model/train.py \
-dn FB15k-betae \
-m q2p \
--train_query_dir /DIR/sampled_data_29_train \
--valid_query_dir /DIR/sampled_data_58_valid \
--test_query_dir /DIR/sampled_data_58_test \
--checkpoint_path /DIR/kg_reasoning_logs \
-fol \
-b 1024
#Training BetaE on FB15k, we use gradient accumulation to maintain the batch-size for BetaE and ConE.
CUDA_VISIBLE_DEVICES=1 python ../model/train.py \
-dn FB15k-betae \
-m betae \
--train_query_dir /DIR/sampled_data_29_train \
--valid_query_dir /DIR/sampled_data_58_valid \
--test_query_dir /DIR/sampled_data_58_test \
--checkpoint_path /DIR/kg_reasoning_logs \
-b 32 \
--log_steps 60000 \
--gradient_accumulation_steps 32 \
--warm_up_steps 10000 \
-fol \
-lr 0.0003
#Training SQE-LSTM on FB15k-237
CUDA_VISIBLE_DEVICES=0 python ../model/train.py \
-dn FB15k-237-betae \
-m lstm \
--train_query_dir /DIR/sampled_data_29_train \
--valid_query_dir /DIR/sampled_data_58_valid \
--test_query_dir /DIR/sampled_data_58_test \
--checkpoint_path /DIR/kg_reasoning_logs \
-b 1024 \
--log_steps 120000 \
-fol \
-lr 0.0001
#Training SQE-Transformer on NELL
CUDA_VISIBLE_DEVICES=0 python ../model/train.py \
-dn NELL-betae \
-m transformer \
--train_query_dir /DIR/sampled_data_29_train \
--valid_query_dir /DIR/sampled_data_58_valid \
--test_query_dir /DIR/sampled_data_58_test \
--checkpoint_path /DIR/kg_reasoning_logs \
-b 512 \
--log_steps 120000 \
-fol \
-lr 0.0001