-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict_test_origin_text.py
157 lines (130 loc) · 5.89 KB
/
predict_test_origin_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
from torchvision import transforms
import os.path
from sklearn.utils import shuffle
import torch
from sklearn.metrics import classification_report
from torch.utils.data import DataLoader, TensorDataset, random_split, SubsetRandomSampler, ConcatDataset
import torch.nn.init
import pandas as pd
from torch import nn
import numpy as np
import torch.optim as optim
import torch.nn.init
from sklearn.model_selection import KFold
from sklearn.metrics import roc_auc_score
import copy
import time
from utils import *
from models import *
from dataloader import *
def get_parameter_number(model):
total_num = sum(p.numel() for p in model.parameters())
trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
return {'Total': total_num, 'Trainable': trainable_num}
def print_model(model):
# 查看网络的结构
print(model)
# 打印模型参数
for param in model.parameters():
print(param)
# 打印模型名称与shape
for name, parameters in model.named_parameters():
print(name, ':', parameters.size())
print("\n\n")
print(get_parameter_number(model))
def predict(model, test_dataloaders, criterion, output_name):
print("\n######## test ########")
model.eval()
predicted_labels = []
predicted_probs = []
predicted_text_ids = []
with torch.no_grad():
for i, (text_ids, input_ids, attention_masks) in enumerate(test_dataloaders):
input_ids = input_ids.to(device)
attention_masks = attention_masks.to(device)
logits = model(input_ids, attention_masks)
outputs = torch.sigmoid(logits)
preds = outputs.reshape(-1).round()
predicted_text_ids += list(text_ids)
predicted_labels += preds.detach().cpu().tolist()
predicted_probs += outputs.reshape(-1).detach().cpu().tolist()
predict_df = pd.DataFrame(
{"tweet_id": predicted_text_ids, "predicted_labels": predicted_labels,
"probabilities": predicted_probs})
predict_df.to_csv(f"./output/{output_name}", index=False)
# model.eval()
# running_loss = 0.0
# running_corrects = 0
# predicted_labels = []
# predicted_probs = []
# predicted_text_ids = []
# gold_labels = []
#
# with torch.no_grad():
# for i, (text_ids, input_ids, attention_masks, labels) in enumerate(test_dataloaders):
# input_ids = input_ids.to(device)
# attention_masks = attention_masks.to(device)
# labels = labels.to(device)
#
# logits = model(input_ids, attention_masks)
# loss = criterion(logits, labels)
# outputs = torch.sigmoid(logits)
#
# preds = outputs.reshape(-1).round()
#
# running_loss += loss.item() * input_ids.size(0)
# running_corrects += torch.sum(preds == labels.reshape(-1))
#
# predicted_text_ids += list(text_ids)
# predicted_labels += preds.detach().cpu().tolist()
# predicted_probs += outputs.reshape(-1).detach().cpu().tolist()
# gold_labels += labels.reshape(-1).detach().cpu().tolist()
#
# epoch_loss = running_loss / len(test_dataset)
# # epoch_acc = running_corrects.double() / len(val_dataset)
#
# epoch_metrics = classification_report(gold_labels, predicted_labels, output_dict=True, digits=4)
# epoch_f1 = epoch_metrics["1.0"]['f1-score']
# epoch_precision = epoch_metrics["1.0"]['precision']
# epoch_recall = epoch_metrics["1.0"]['recall']
# epoch_acc = epoch_metrics["accuracy"]
#
# macro_f1 = (epoch_metrics["1.0"]['f1-score'] + epoch_metrics["0.0"]['f1-score']) / 2
# auc_score = roc_auc_score(gold_labels, predicted_labels)
#
# predict_df = pd.DataFrame(
# {"tweet_id": predicted_text_ids, "gold_labels": gold_labels, "predicted_labels": predicted_labels,
# "probabilities": predicted_probs})
# predict_df.to_csv(f"./output/{output_name}", index=False)
#
# print(
# 'test loss: {:.4f}, acc: {:.4f}, f1: {:.4f}, precision: {:.4f}, recall: {:.4f}, macro_f1: {:.4f}, auc_score: {:.4f}'.format(
# epoch_loss, epoch_acc,
# epoch_f1,
# epoch_precision,
# epoch_recall, macro_f1, auc_score))
#
# print(classification_report(gold_labels, predicted_labels, digits=4))
if __name__ == '__main__':
dataset_name = 'abortion'
model_name = 'stance_alltrain_text_resnet50_deberta-v3-large_lr1e-05_bs8_augmentation_wordnet0_pooler0'
output_name = 'stance_alltrain_text_resnet50_deberta-v3-large_lr1e-05_bs8_augmentation_wordnet0_pooler0_abortion.csv'
args = get_argparser().parse_args()
df_test = pd.read_csv(f"./data/{dataset_name}_test.csv", index_col=0)
# df_test = pd.read_csv(f"./data/{dataset_name}_dev.csv", index_col=0)
test_annotation = df_test.reset_index()
test_dataset = TextTestDataset(args, annotation=test_annotation, root_dir=os.path.join(args.data_dir, f'images/{dataset_name}'))
# test_dataset = TextDataset(args, annotation=test_annotation, root_dir=os.path.join(args.data_dir, f'images/{dataset_name}'))
test_dataloaders = DataLoader(test_dataset, collate_fn=collate_fn, batch_size=args.batch_size)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(args.seed)
model1 = TextModel(text_model_name=args.text_model_name, out_dim=1, freeze_model=args.freeze_model)
criterion = nn.BCEWithLogitsLoss()
checkpoint1 = torch.load(os.path.join(f"/home/data/zwanggy/2023/image_arg_experiments/{model_name}/{dataset_name}", f'model_best.pth.tar'))
# checkpoint1 = torch.load(os.path.join(f"./experiments/{model_name}/{dataset_name}", f'model_best.pth.tar'))
model1.load_state_dict(checkpoint1['state_dict'])
model1.to(device)
# print_model(model1)
predict(model1, test_dataloaders, criterion, output_name)