-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprivacy_evaluate.py
187 lines (172 loc) · 8.49 KB
/
privacy_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from feature_extracter import AgeDiscriminator, GenderDiscriminator, OccupationDiscriminator, LocationDiscriminator
from main_FedRec_ML import TwoSideGraphModel
import torch
import torch.nn as nn
import numpy as np
from utility.parser import parse_args
import os
from sklearn.metrics import f1_score, roc_auc_score
from sklearn.model_selection import train_test_split
from utility.load_data import Data
import random
import copy
from torch.utils.data import WeightedRandomSampler
import dgl
from sklearn.neural_network import MLPClassifier
args = parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
if args.gpu >= 0 and torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
data_generator = Data(path=args.data_path + args.dataset, batch_size=args.batch_size, dataset=args.dataset)
age_discriminator = AgeDiscriminator(args.embed_size + sum(args.layer_size)).to(device)
occupation_discriminator = OccupationDiscriminator(args.embed_size + sum(args.layer_size)).to(device)
gender_discriminator = GenderDiscriminator(args.embed_size + sum(args.layer_size)).to(device)
location_discriminator = LocationDiscriminator(args.embed_size + sum(args.layer_size)).to(device)
def load_rec_model(name, n_users, n_items):
state_dict = torch.load(name, map_location=device)
model = TwoSideGraphModel(args.embed_size, args.layer_size,
args.mess_dropout, args.regs[0])
g_user = dgl.add_self_loop(dgl.graph([], num_nodes=n_users)).to(device)
g_item = dgl.add_self_loop(dgl.graph([], num_nodes=n_items)).to(device)
model.init_parameters(g_user, g_item)
model.load_state_dict(state_dict)
return model
def sample_user(user_list, batch_size=args.user_batch_size):
return random.sample(user_list, batch_size)
def privacy_estimator_train(attr, embed):
if attr == 'gender':
model = gender_discriminator
labels = [0 if att['gender'] is 'M' else 1 for att in data_generator.users_features]
criterion = nn.BCELoss()
weight = {0: 1 / (len(labels) - sum(labels)), 1: 1 / sum(labels)}
weight = [weight[i] for i in labels]
labels = torch.tensor(labels, dtype=torch.float).to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
elif attr == 'age':
model = age_discriminator
reindex = {'1': 0, '18': 1, '25': 2, '35': 3, '45': 4, '50': 5, '56': 6}
labels = [reindex[att['age']] for att in data_generator.users_features]
weight = [0] * 7
for i in labels:
weight[i] += 1
for i in range(7):
weight[i] = 1 / weight[i]
weight = [weight[i] for i in labels]
labels = torch.tensor(labels).to(device)
criterion = nn.NLLLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
elif attr == 'occupation':
model = occupation_discriminator
labels = [int(att['occupation']) for att in data_generator.users_features]
weight = [0] * 21
for i in labels:
weight[i] += 1
for i in range(21):
weight[i] = 1 / weight[i]
weight = [weight[i] for i in labels]
labels = torch.tensor(labels).to(device)
criterion = nn.NLLLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
elif attr == 'location':
model = location_discriminator
labels = [int(att['location']) for att in data_generator.users_features]
weight = [0] * 453
# for i in labels:
# weight[i] += 1
# for i in range(453):
# weight[i] = 1 / weight[i]
# weight = [weight[i] for i in labels]
labels = torch.tensor(labels).to(device)
criterion = nn.NLLLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.0001, momentum=0.9)
else:
print('no {} attribute found'.format(attr))
return
# optimizer = torch.optim.Adam(model.parameters(), lr=0.005, weight_decay=1e-4)
model.train()
user_embed = embed.to(device)
user_list = np.array(list(range(data_generator.n_users)))
user_train, user_test = train_test_split(user_list, test_size=0.3, random_state=1)
user_test, user_valid = train_test_split(user_test, test_size=0.5, random_state=1)
best_record = 0
best_model = None
best_epoch = 0
# weight = np.array(weight)
# user_train_weight = weight[user_train]
record_loss = []
for epoch in range(1000):
model.train()
users_batch = sample_user(user_train.tolist(), 2000)
# users_batch = user_train[list(WeightedRandomSampler(user_train_weight, 1024))]
# users_batch = sample_user(list(range(data_generator.n_users)), 3000)
embed_batch = user_embed[users_batch]
label_batch = labels[users_batch]
# print(sum(label_batch))
output = model(embed_batch)
loss = criterion(output.squeeze(), label_batch)
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
score, predict = model.predict(user_embed[user_valid])
record_loss.append(criterion(model(user_embed[user_valid]).squeeze(), labels[user_valid]).detach().cpu())
if attr == 'gender':
record = roc_auc_score(labels[user_valid].cpu(), score.cpu())
else:
record = f1_score(labels[user_valid].cpu(), predict.cpu(), average='micro')
if record > best_record:
best_record = record
best_model = copy.deepcopy(model)
best_epoch = epoch
best_model.eval()
score, predict = best_model.predict(user_embed[user_test])
if attr == 'gender':
auc_score = roc_auc_score(labels[user_test].cpu(), score.cpu())
msg = '{} discriminator prediction auc score: {}'.format(attr, auc_score)
print(msg)
else:
f1 = f1_score(labels[user_test].cpu(), predict.cpu(), average='micro')
msg = '{} discriminator prediction f1 score: {}'.format(attr, f1)
print(msg)
print(best_epoch)
if __name__ == '__main__':
# path = '/home/qhuaf/NGCF/model/PartTwoSideGraph.pkl'
# rec_model = load_rec_model(path,
# data_generator.n_users, data_generator.n_items).to(device)
# path = '/data/qhuaf/graph_pri/model/test1.pkl'
# path = '/home/qhuaf/graph_pri/save_model/0.5/with_pri_1_0.5.pkl'
path = '/home/qhuaf/graph_pri/save_model/douban/douban_with_pri_0.5_0.5.pkl'
rec_model = load_rec_model(path,
data_generator.n_users, data_generator.n_items).to(device)
# adj = data_generator.g.adj(etype='ui')
# neighbor_user = torch.sparse.mm(adj, adj.t().to_dense())
# neighbor_item = torch.sparse.mm(adj.t(), adj.to_dense())
# tmp_user_out = torch.topk(neighbor_user, args.num_neighbor)[1].flatten()
# tmp_user_in = torch.LongTensor(list(range(data_generator.n_users))).repeat(args.num_neighbor).reshape(
# (-1, data_generator.n_users)).t().flatten()
# tmp_item_out = torch.topk(neighbor_item, args.num_neighbor)[1].flatten()
# tmp_item_in = torch.LongTensor(list(range(data_generator.n_items))).repeat(args.num_neighbor).reshape(
# (-1, data_generator.n_items)).t().flatten()
#
# g_user = dgl.graph((tmp_user_out, tmp_user_in)).to(device)
# g_item = dgl.graph((tmp_item_out, tmp_item_in)).to(device)
user_emb = rec_model.feature_dict['user']
emb_similarity = torch.cosine_similarity(user_emb.unsqueeze(1).cpu(), user_emb.unsqueeze(0).cpu(), dim=2)
tmp_user_out = torch.topk(emb_similarity, args.num_neighbor)[1].flatten()
tmp_user_in = torch.LongTensor(list(range(data_generator.n_users))).repeat(args.num_neighbor).reshape(
(-1, data_generator.n_users)).t().flatten()
g_user = dgl.graph((tmp_user_out, tmp_user_in)).to(device)
tmp_item_out = torch.LongTensor(list(range(data_generator.n_items)))
tmp_item_in = torch.LongTensor(list(range(data_generator.n_items)))
g_item = dgl.graph((tmp_item_out, tmp_item_in)).to(device)
rec_model.eval()
rec_model.g_user = g_user
rec_model.g_item = g_item
user_embed, _, _ = rec_model(list(range(data_generator.n_users)), [], [])
user_embed = user_embed.detach().cpu()
privacy_estimator_train('location', user_embed)
# privacy_estimator_train('gender', user_embed)
# privacy_estimator_train('age', user_embed)
# privacy_estimator_train('occupation', user_embed)