-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluation.py
259 lines (223 loc) · 11 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import datasets
import evaluate
import logging
import numpy as np
import os
import pickle
import sys
import transformers
from models.modeling_wav2vec2 import Wav2Vec2ForMultilabelSequenceClassification
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from utils import data_loader
from utils.args_helper import DataTrainingArguments, ModelArguments
from utils.metrics import compute_metrics
logger = logging.getLogger(__name__)
def random_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000):
"""Randomly sample chunks of `max_length` seconds from the input audio"""
sample_length = int(round(sample_rate * max_length))
if len(wav) <= sample_length:
return wav
random_offset = randint(0, len(wav) - sample_length - 1)
return wav[random_offset : random_offset + sample_length]
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} "
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to train from scratch."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Initialize our dataset and prepare it for the emotion classification task.
data = data_loader.load_dataset(data_args.dataset_path)
raw_datasets = {}
for d in data:
dset = datasets.DatasetDict()
dset["train"] = d["data"][0]
dset["validation"] = d["data"][1]
for test_dset_name, test_dset in d["data"][-1].items():
dset[f'test-{test_dset_name}'] = test_dset
raw_datasets[f'{d["lang"]}-{d["group"]}'] = dset.copy()
feature_extractor = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path,
return_attention_mask=model_args.attention_mask,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
def data_transforms(batch):
"""Apply data_transforms across a batch."""
output_batch = {"input_values": [], "labels": [], "labels_mask": []}
for audio, labels in zip(batch['audio'], batch['labels']):
wav = audio["array"]
label_array = np.array([int(label) for label in labels])
label_mask = label_array != -100
label_mask = label_mask / label_mask.sum()
output_batch["input_values"].append(wav)
output_batch["labels"].append(label_array)
output_batch["labels_mask"].append(label_mask)
return output_batch
# # Prepare label mappings.
# # We'll include these in the model's config to get human readable labels in the Inference API.
# labels = preprocessed_datasets["train"].features[data_args.label_column_name].names
# label2id, id2label = dict(), dict()
# for i, label in enumerate(labels):
# label2id[label] = str(i)
# id2label[str(i)] = label
###
# Model Initialization
###
label_list = [
'sadness', 'fear', 'angry', 'happiness', 'disgust', 'neutral', 'surprise',
'positive', 'negative', 'excitement', 'frustrated', 'other', 'unknown'
]
if 'wav2vec' in model_args.model_name_or_path:
model = Wav2Vec2ForMultilabelSequenceClassification.from_pretrained(
model_args.model_name_or_path, num_labels=len(label_list)).to(training_args.device)
else:
raise('Not Implemented Error')
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
def evaluate_subset(raw_datasets, subset, eval_split="test"):
if eval_split == "validation":
split_names = [eval_split]
elif eval_split == "test":
split_names = [k for k in raw_datasets[subset].keys() if eval_split in k]
else:
return NotImplementedError("Split name has to be either: `train`, `validation`, or `test`.")
preprocessed_datasets = raw_datasets[subset].copy()
if data_args.audio_column_name not in preprocessed_datasets["train"].column_names:
raise ValueError(
f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_path}'. "
"Make sure to set `--audio_column_name` to the correct audio column - one of "
f"{', '.join(preprocessed_datasets['train'].column_names)}."
)
if data_args.label_column_name not in preprocessed_datasets["train"].column_names:
raise ValueError(
f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_path}'. "
"Make sure to set `--label_column_name` to the correct text column - one of "
f"{', '.join(preprocessed_datasets['train'].column_names)}."
)
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
if training_args.do_train:
if data_args.max_train_samples is not None:
preprocessed_datasets["train"] = (
preprocessed_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
)
# Set the training transforms
preprocessed_datasets["train"].set_transform(data_transforms, output_all_columns=False)
if training_args.do_eval:
if data_args.max_eval_samples is not None:
for split in split_names:
preprocessed_datasets[split] = (
preprocessed_datasets[split].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
)
# Set the validation transforms
for split in split_names:
preprocessed_datasets[split].set_transform(data_transforms, output_all_columns=False)
# Initialize our trainer
training_args.remove_unused_columns = False
trainer = Trainer(
model=model,
args=training_args,
train_dataset=preprocessed_datasets["train"] if training_args.do_train else None,
eval_dataset=preprocessed_datasets["validation"] if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=feature_extractor,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
trainer.log_metrics(f'train_{subset}', train_result.metrics)
trainer.save_metrics(f'train_{subset}', train_result.metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
metrics_for_all_tasks = {}
pred_dir_path = os.path.join(training_args.output_dir, 'pred')
if not os.path.exists(pred_dir_path):
os.makedirs(pred_dir_path)
for split in split_names:
predictions, label_ids, metrics = trainer.predict(
test_dataset=preprocessed_datasets[split], metric_key_prefix=f'eval_{subset}_{split}')
with open(os.path.join(pred_dir_path, f'{subset}_{split}.pkl'), 'wb') as f:
pickle.dump({
"predictions": predictions,
"label_ids": label_ids,
}, f)
metrics_for_all_tasks.update(metrics)
print(f"=== Validation {subset} ===")
trainer.log_metrics(f'{eval_split}_{subset}', metrics_for_all_tasks)
trainer.save_metrics(f'{eval_split}_{subset}', metrics_for_all_tasks)
lang_subset = []
if "zho" in data_args.validation_language:
lang_subset.append("zho")
if "eng" in data_args.validation_language:
lang_subset.append("eng")
if "yue" in data_args.validation_language:
lang_subset.append("yue")
age_group_subset = []
if data_args.validation_age_group == "all":
age_group_subset.append("elderly")
age_group_subset.append("others")
elif data_args.validation_age_group == "elderly":
age_group_subset.append("elderly")
elif data_args.validation_age_group == "others":
age_group_subset.append("others")
for lang in lang_subset:
for age_group in age_group_subset:
evaluate_subset(raw_datasets, subset=f'{lang}-{age_group}')
if __name__ == "__main__":
main()