Skip to content

Latest commit

 

History

History
1129 lines (849 loc) · 38.7 KB

README.md

File metadata and controls

1129 lines (849 loc) · 38.7 KB

Releases Maven Central javadoc

Introduction

Kilo is an open-source framework for creating and consuming RESTful and REST-like web services in Java. It is extremely lightweight and requires only a Java runtime environment and a servlet container. The project's name comes from the nautical K or Kilo flag, which means "I wish to communicate with you":

This guide introduces the Kilo framework and provides an overview of its key features.

Contents

Getting Kilo

Kilo is distributed via Maven Central:

  • org.httprpc:kilo-client - includes support for consuming web services, interacting with relational databases, and working with common file formats (Java 17 or later required)
  • org.httprpc:kilo-server - depends on client; includes support for creating web services (Jakarta Servlet specification 5.0 or later required)

Kilo Classes

Classes provided by the Kilo framework include:

Each is discussed in more detail below.

WebService

WebService is an abstract base class for web services. It extends the similarly abstract HttpServlet class and provides a thin, REST-oriented layer on top of the standard servlet API.

For example, the following service implements some simple mathematical operations:

@WebServlet(urlPatterns = {"/math/*"}, loadOnStartup = 1)
@Description("Math example service.")
public class MathService extends WebService {
    @RequestMethod("GET")
    @ResourcePath("sum")
    @Description("Calculates the sum of two numbers.")
    public double getSum(
        @Description("The first number.") double a,
        @Description("The second number.") double b
    ) {
        return a + b;
    }

    @RequestMethod("GET")
    @ResourcePath("sum")
    @Description("Calculates the sum of a list of numbers.")
    public double getSum(
        @Description("The numbers to add.") List<Double> values
    ) {
        var total = 0.0;

        for (var value : values) {
            total += value;
        }

        return total;
    }
}

The RequestMethod annotation associates an HTTP verb such as GET or POST with a service method, or "handler". The optional ResourcePath annotation associates a handler with a specific path, or "endpoint", relative to the servlet. WebService selects the best method to execute based on the values provided by the caller. For example, this request would invoke the first method:

GET /math/sum?a=2&b=4

while this would invoke the second:

GET /math/sum?values=1&values=2&values=3

In either case, the service would return the value 6 in response.

The optional Description annotation is used to document a service implementation and is discussed in more detail later.

Method Parameters

Method parameters may be any of the following types:

  • Byte/byte
  • Short/short
  • Integer/int
  • Long/long
  • Float/float
  • Double/double
  • Boolean/boolean
  • Character/char
  • String
  • java.net.URI
  • java.nio.file.Path
  • java.time.Instant
  • java.time.LocalDate
  • java.time.LocalTime
  • java.time.LocalDateTime
  • java.time.Duration
  • java.time.Period
  • java.util.Date
  • java.util.UUID

The following multi-value types are also supported:

  • java.util.List
  • java.util.Set
  • array/varargs

Additionally, java.util.Map, bean, and record types are supported for body content. Arguments of type jakarta.servlet.http.Part may be used with POST requests submitted as multi-part form data.

Unspecified values are automatically converted to 0, false, or the null character for primitive types. Date values are decoded from a long value representing epoch time in milliseconds. Other values are parsed from their string representations.

List, Set, and array elements are automatically converted to their declared types. If no values are provided for a list, set, or array parameter, an empty instance (not null) will be passed to the method.

If a provided value cannot be coerced to the expected type, an HTTP 403 (forbidden) response will be returned. If no method is found that matches the provided arguments, HTTP 405 (method not allowed) will be returned.

Note that service classes must be compiled with the -parameters flag so that parameter names are available at runtime.

Required Parameters

Parameters that must be provided by the caller can be indicated by the Required annotation. For example, the following service method accepts a single required owner argument:

@RequestMethod("GET")
public List<Pet> getPets(@Required String owner) throws SQLException { 
    ... 
}

List, Set, and array parameters are implicitly required, since these values will never be null (though they may be empty). For all other parameter types, HTTP 403 will be returned if a required value is not provided.

Custom Parameter Names

The Name annotation can be used to associate a custom name with a method parameter. For example:

@WebServlet(urlPatterns = {"/members/*"}, loadOnStartup = 1)
public class MemberService extends WebService {
    @RequestMethod("GET")
    public List<Person> getMembers(
        @Name("first_name") String firstName,
        @Name("last_name") String lastName
    ) {
        ...
    }
}

This method could be invoked as follows:

GET /members?first_name=foo*&last_name=bar*

Path Variables

Path variables (or "keys") are specified by a "?" character in a handler's resource path. For example, the itemID argument in the method below is provided by a path variable:

@RequestMethod("GET")
@ResourcePath("items/?")
@Description("Returns detailed information about a specific item.")
public ItemDetail getItem(
    @Description("The item ID.") Integer itemID
) throws SQLException { ... }

Path parameters must precede query parameters in the method signature and are implicitly required. Values are mapped to method arguments in declaration order.

Body Content

Body content may be declared as the final parameter in a POST or PUT handler. For example, this method accepts an item ID as a path variable and an instance of ItemDetail as a body argument:

@RequestMethod("PUT")
@ResourcePath("items/?")
@Description("Updates an item.")
public void updateItem(
    @Description("The item ID.") Integer itemID,
    @Description("The updated item.") ItemDetail item
) throws SQLException { ... }

Like path parameters, body parameters are implicitly required. By default, content is assumed to be JSON and is automatically converted to the appropriate type. Subclasses can override the decodeBody() method to perform custom conversions.

A body parameter of type Void may be used to indicate that the handler will process the input stream directly, as discussed below.

Return Values

Return values are converted to JSON as follows:

  • Number/numeric primitive: number
  • Boolean/boolean: boolean
  • CharSequence: string
  • java.util.Date: number representing epoch time in milliseconds
  • Iterable: array
  • java.util.Map, bean, or record type: object

Additionally, instances of the following types are automatically converted to their string representations:

  • Character/char
  • Enum
  • java.net.URI
  • java.nio.file.Path
  • java.time.TemporalAccessor
  • java.time.TemporalAmount
  • java.util.UUID

By default, an HTTP 200 (OK) response is returned when a service method completes successfully. However, if the method is annotated with Creates, HTTP 201 (created) will be returned instead. If the method is annotated with Accepts, HTTP 202 (accepted) will be returned. If the handler's return type is void or Void, HTTP 204 (no content) will be returned.

If a service method returns null, an HTTP 404 (not found) response will be returned.

Although return values are encoded as JSON by default, subclasses can override the encodeResult() method of the WebService class to support alternative representations. See the method documentation for more information.

Exceptions

If an exception is thrown by a service method and the response has not yet been committed, the exception message (if any) will be returned as plain text in the response body. Error status is determined as follows:

  • IllegalArgumentException or UnsupportedOperationException - HTTP 403 (forbidden)
  • NoSuchElementException - HTTP 404 (not found)
  • IllegalStateException - HTTP 409 (conflict)
  • Any other exception - HTTP 500 (internal server error)

Subclasses can override the reportError() method to perform custom error handling.

Database Connectivity

For services that require database connectivity, the following method can be used to obtain a JDBC connection object associated with the current invocation:

protected static Connection getConnection() { ... }

The connection is opened via a data source identified by getDataSourceName(), which returns null by default. Service classes must override this method to provide the name of a valid data source.

Auto-commit is disabled so an entire request will be processed within a single transaction. If the request completes successfully, the transaction is committed. Otherwise, it is rolled back.

Request and Repsonse Properties

The following methods provide access to the request and response objects associated with the current invocation:

protected HttpServletRequest getRequest() { ... }
protected HttpServletResponse getResponse() { ... }

For example, a service might use the request to read directly from the input stream, or use the response to return a custom header.

The response object can also be used to produce a custom result. If a service method commits the response by writing to the output stream, the method's return value (if any) will be ignored by WebService. This allows a service to return content that cannot be easily represented as JSON, such as image data.

Inter-Service Communication

A reference to any active service can be obtained via the getInstance() method of the WebService class. This can be useful when the implementation of one service depends on functionality provided by another service, for example.

API Documentation

An index of all active services can be found at the application's context root:

GET http://localhost:8080/kilo-test/

Documentation for a specific service can be viewed by appending "?api" to the service's base URL:

GET http://localhost:8080/kilo-test/catalog?api

Implementations can provide additional information about service types and operations using the Description annotation. For example:

@WebServlet(urlPatterns = {"/catalog/*"}, loadOnStartup = 1)
@Description("Catalog example service.")
public class CatalogService extends AbstractDatabaseService {
    @RequestMethod("GET")
    @ResourcePath("items")
    @Description("Returns a list of all items in the catalog.")
    public List<Item> getItems() throws SQLException {
        ...
    }
    
    ...
}

Descriptions can also be associated with bean types, enums, and records:

@Table("item")
@Description("Represents an item in the catalog.")
public interface Item {
    @Name("id")
    @Column("id")
    @PrimaryKey
    @Description("The item's ID.")
    Integer getID();
    void setID(Integer id);

    @Column("description")
    @Index
    @Description("The item's description.")
    @Required
    String getDescription();
    void setDescription(String description);

    @Column("price")
    @Description("The item's price.")
    @Required
    Double getPrice();
    void setPrice(Double price);
}
@Description("Represents a size option.")
public enum Size implements Numeric {
    @Description("A small size.")
    SMALL(10),
    @Description("A medium size.")
    MEDIUM(20),
    @Description("A large size.")
    LARGE(30);

    private final int value;

    Size(int value) {
        this.value = value;
    }

    @Override
    public int value() {
        return value;
    }
}
@Description("Represents an x/y coordinate pair.")
public record Coordinates(
    @Description("The x-coordinate.") @Required int x,
    @Description("The y-coordinate.") @Required int y
) {
}

The FormData annotation can be used to indicate that a method accepts form data. Types or methods annotated as Deprecated will be identified as such in the output.

A JSON version of the generated documentation can be obtained by specifying an "Accept" type of "application/json" in the request headers. The response can be used to process an API definition programatically; for example, to generate client-side stub code.

WebServiceProxy

The WebServiceProxy class is used to submit API requests to a server. It provides the following constructor, which accepts a string representing the HTTP method to execute and the URI of the requested resource:

public WebServiceProxy(String method, URI uri) { ... }

Query arguments are specified via a map passed to the setArguments() method. Any value may be used as an argument and will generally be encoded using its string representation. However, Date instances are first converted to a long value representing epoch time in milliseconds. Additionally, Collection or array instances represent multi-value parameters and behave similarly to <select multiple> tags in HTML forms.

Body content is specified via the setBody() method. By default, it will be serialized as JSON; however, the setRequestHandler() method can be used to facilitate alternate encodings:

public interface RequestHandler {
    String getContentType();
    void encodeRequest(Object body, OutputStream outputStream) throws IOException;
}

For example, the WebServiceProxy.FormDataRequestHandler class submits requests as form data. When using the multi-part encoding (the default), instances of java.nio.file.Path represent file uploads and behave similarly to <input type="file"> tags in HTML.

Service operations are invoked via the following method:

public Object invoke() throws IOException { ... }

By default, response content is assumed to be JSON. The setResponseHandler() method can be used to decode alternate representations:

public interface ResponseHandler {
    Object decodeResponse(InputStream inputStream, String contentType) throws IOException;
}

If an operation does not complete successfully, the default error handler will throw a WebServiceException (a subclass of IOException). If the type of the error response is "text/plain", the response content will be provided in the exception message.

A custom error handler can be provided via setErrorHandler():

public interface ErrorHandler {
    void handleResponse(InputStream errorStream, String contentType, int statusCode) throws IOException;
}

The following code demonstrates how WebServiceProxy might be used to access the operations of the simple math service discussed earlier:

// GET /math/sum?a=2&b=4
var webServiceProxy = new WebServiceProxy("GET", baseURI.resolve("math/sum"));

webServiceProxy.setArguments(mapOf(
    entry("a", 4),
    entry("b", 2)
));

System.out.println(webServiceProxy.invoke()); // 6.0
// GET /math/sum?values=1&values=2&values=3
var webServiceProxy = new WebServiceProxy("GET", baseURI.resolve("math/sum"));

webServiceProxy.setArguments(mapOf(
    entry("values", listOf(1, 2, 3))
));

System.out.println(webServiceProxy.invoke()); // 6.0

POST, PUT, and DELETE operations are also supported. The listOf() and mapOf() methods are discussed in more detail later.

Typed Invocation

WebServiceProxy additionally provides the following methods to facilitate convenient, type-safe access to web APIs:

public static <T> T of(Class<T> type, URI baseURI) { ... }
public static <T> T of(Class<T> type, URI baseURI, Map<String, Object> headers) { ... }

Both versions return an implementation of a given interface that submits requests to the provided URI. An optional map accepted by the second version can be used to provide common request headers.

The optional ServicePath annotation can be used to associate a base path with a proxy type. The RequestMethod and ResourcePath annotations are used as described earlier for WebService. Proxy methods must include a throws clause that declares IOException, so that callers can handle unexpected failures. For example:

@ServicePath("math")
public interface MathServiceProxy {
    @RequestMethod("GET")
    @ResourcePath("sum")
    double getSum(double a, double b) throws IOException;

    @RequestMethod("GET")
    @ResourcePath("sum")
    double getSum(List<Double> values) throws IOException;

    default double getAverage(List<Double> values) throws IOException {
        return getSum(values) / values.size();
    }
}
var mathServiceProxy = WebServiceProxy.of(MathServiceProxy.class, baseURI);

System.out.println(mathServiceProxy.getSum(4, 2)); // 6.0
System.out.println(mathServiceProxy.getSum(listOf(1.0, 2.0, 3.0))); // 6.0

System.out.println(mathServiceProxy.getAverage(listOf(1.0, 2.0, 3.0, 4.0, 5.0))); // 3.0

The Name and Required annotations may also be applied to proxy method parameters.

Path variables and body content are handled as described for WebService. Body parameters are required for POST and PUT methods. A body parameter of type Void may be used to indicate that a method does not accept a body.

Note that proxy types must be compiled with the -parameters flag so their method parameter names are available at runtime.

JSONEncoder and JSONDecoder

The JSONEncoder and JSONDecoder classes are used internally by WebService and WebServiceProxy to process request and response data. However, they can also be used directly by application logic. For example:

var map = mapOf(
    entry("vegetables", listOf(
        "carrots", 
        "peas", 
        "potatoes"
    )),
    entry("desserts", listOf(
        "cookies",
        "cake",
        "ice cream"
    ))
);

try (var outputStream = Files.newOutputStream(file)) {
    var jsonEncoder = new JSONEncoder();

    jsonEncoder.write(map, outputStream);
}

try (var inputStream = Files.newInputStream(file)) {
    var jsonDecoder = new JSONDecoder();

    map = (Map<String, List<String>>)jsonDecoder.read(inputStream);
}

System.out.println(map.get("vegetables").get(0)); // carrots

TextEncoder and TextDecoder

The TextEncoder and TextDecoder classes can be used to write and read plain text content, respectively. For example:

var text = "Hello, World!";

try (var outputStream = Files.newOutputStream(file)) {
    var textEncoder = new TextEncoder();

    textEncoder.write(text, outputStream);
}

try (var inputStream = Files.newInputStream(file)) {
    var textDecoder = new TextDecoder();

    text = textDecoder.read(inputStream);
}

System.out.println(text); // Hello, World!

CSVEncoder

The CSVEncoder class serializes a sequence of map or bean values to CSV. The list passed to the constructor represents both the names of the columns in the output document and the keys or properties to which those columns correspond. For example:

var maps = listOf(
    mapOf(
        entry("a", "hello"),
        entry("b", 123),
        entry("c", true)
    ),
    mapOf(
        entry("a", "goodbye"),
        entry("b", 456),
        entry("c", false)
    )
);

var csvEncoder = new CSVEncoder(listOf("a", "b", "c"));

csvEncoder.write(maps, System.out);

This code would produce the following output:

"a","b","c"
"hello",123,true
"goodbye",456,false

String values are automatically wrapped in double-quotes and escaped. Instances of java.util.Date are encoded as a long value representing epoch time in milliseconds. All other values are encoded via toString().

TemplateEncoder

The TemplateEncoder class transforms an object hierarchy (known as a "data dictionary") into an output format using a template document. Template syntax is based loosely on the Mustache specification and supports most Mustache features.

TemplateEncoder provides the following constructors:

public TemplateEncoder(URI uri) { ... }
public TemplateEncoder(Class<?> type, String name) { ... }

The first accepts the location of a template document as a URI. The second determines the location of the template via the provided type and resource name.

For example, this code applies a template named "example.html" to a map instance:

var map = mapOf(
    entry("a", "hello"),
    entry("b", 123),
    entry("c", true)
);

var templateEncoder = new TemplateEncoder(Examples.class, "example.html");

templateEncoder.write(map, System.out);

Given the following template as input:

<html>
<body>
<p>{{a}}</p>
<p>{{b}}</p>
<p>{{c}}</p>
</body>
</html>

the code would produce this output:

<html>
<body>
<p>hello</p>
<p>123</p>
<p>true</p>
</body>
</html>

BeanAdapter

The BeanAdapter class provides access to Java bean properties via the Map interface. For example:

var course = new Course();

course.setName("CS 101");
course.setBuilding("Technology Lab");
course.setRoomNumber(210);

var courseAdapter = new BeanAdapter(course);

System.out.println(courseAdapter.get("name")); // CS 101
System.out.println(courseAdapter.get("building")); // Technology Lab
System.out.println(courseAdapter.get("roomNumber")); // 210

BeanAdapter can also be used to facilitate type-safe access to loosely typed data structures:

var map = mapOf(
    entry("name", "CS 101"),
    entry("building", "Technology Lab"),
    entry("roomNumber", 210)
);

var course = BeanAdapter.coerce(map, Course.class);

System.out.println(course.getName()); // CS 101
System.out.println(course.getBuilding()); // Technology Lab
System.out.println(course.getRoomNumber()); // 210

An interface can be used instead of a class to provide a strongly typed "view" of the underlying data. For example:

public interface AssetPricing {
    Instant getDate();
    double getOpen();
    double getHigh();
    double getLow();
    double getClose();
    long getVolume();
}
var map = mapOf(
    entry("date", "2024-04-08T00:00:00Z"),
    entry("open", 169.03),
    entry("close", 168.45),
    entry("high", 169.20),
    entry("low", 168.24),
    entry("volume", 37216858)
);

var assetPricing = BeanAdapter.coerce(map, AssetPricing.class);

System.out.println(assetPricing.getDate()); // 2024-04-08T00:00:00Z
System.out.println(assetPricing.getOpen()); // 169.03
System.out.println(assetPricing.getClose()); // 168.45
System.out.println(assetPricing.getHigh()); // 169.2
System.out.println(assetPricing.getLow()); // 168.24
System.out.println(assetPricing.getVolume()); // 37216858

Required Properties

The Required annotation introduced previously can also be used to indicate that a property must contain a value. For example:

public class Vehicle {
    private String manufacturer;
    private Integer year;

    @Required
    public String getManufacturer() {
        return manufacturer;
    }

    public void setManufacturer(String manufacturer) {
        this.manufacturer = manufacturer;
    }

    @Required
    public Integer getYear() {
        return year;
    }

    public void setYear(Integer year) {
        this.year = year;
    }
}

Because both "manufacturer" and "year" are required, an attempt to coerce an empty map to a Vehicle instance would produce an IllegalArgumentException:

var vehicle = BeanAdapter.coerce(mapOf(), Vehicle.class); // throws

Additionally, although the annotation will not prevent a caller from programmatically assigning a null value to either property, attempting to dynamically set an invalid value will generate an IllegalArgumentException:

var vehicle = new Vehicle();

var vehicleAdapter = new BeanAdapter(vehicle);

vehicleAdapter.put("manufacturer", null); // throws

Similarly, attempting to dynamically access an invalid value will result in an UnsupportedOperationException:

vehicleAdapter.get("manufacturer"); // throws

Custom Property Names

The Name annotation introduced previously can also be used with bean properties. For example:

public class Person {
    private String firstName = null;
    private String lastName = null;

    @Name("first_name")
    public String getFirstName() {
        return firstName;
    }

    public void setFirstName(String firstName) {
        this.firstName = firstName;
    }

    @Name("last_name")
    public String getLastName() {
        return lastName;
    }

    public void setLastName(String lastName) {
        this.lastName = lastName;
    }
}

The preceding class would be serialized to JSON like this:

{
  "first_name": "John",
  "last_name": "Smith"
}

rather than this:

{
  "firstName": "John",
  "lastName": "Smith"
}

QueryBuilder and ResultSetAdapter

The QueryBuilder class provides support for programmatically constructing and executing SQL queries. For example, given the following tables (adapted from the MySQL tutorial):

create table owner (
    name varchar(20),
    primary key (name)
);
create table pet (
    name varchar(20),
    owner varchar(20),
    species varchar(20),
    sex char(1),
    birth date,
    death date,
    primary key (name),
    foreign key (owner) references owner(name)
);

this code could be used to create a query that returns all rows associated with a particular owner:

var queryBuilder = new QueryBuilder();

queryBuilder.appendLine("select * from pet where owner = :owner order by name");

The colon character identifies "owner" as a parameter, or variable. Parameter values, or arguments, can be passed to QueryBuilder's executeQuery() method as shown below:

try (var statement = queryBuilder.prepare(getConnection());
    var results = queryBuilder.executeQuery(statement, mapOf(
        entry("owner", owner)
    ))) {
    ...
}

The ResultSetAdapter type returned by executeQuery() provides access to the contents of a JDBC result set via the Iterable interface. Individual rows are represented by Map instances produced by the adapter's iterator. The results could be coerced to a list of Pet instances and returned to the caller, or used as the data dictionary for a template document:

return results.stream().map(result -> BeanAdapter.coerce(result, Pet.class)).toList();
var templateEncoder = new TemplateEncoder(getClass(), "pets.xml");

templateEncoder.write(results, response.getOutputStream());

Schema Annotations

QueryBuilder also offers a simplified approach to query construction using "schema annotations". For example, given these type definitions:

@Table("owner")
public interface Owner {
    @Column("name")
    @PrimaryKey
    @Index
    String getName();
}
@Table("pet")
public interface Pet {
    @Column("name")
    @PrimaryKey
    @Index
    String getName();

    @Column("owner")
    @ForeignKey(Owner.class)
    String getOwner();

    @Column("species")
    String getSpecies();

    @Column("sex")
    String getSex();

    @Column("birth")
    LocalDate getBirth();

    @Column("death")
    LocalDate getDeath();
}

the preceding query could be written as follows:

var queryBuilder = QueryBuilder.select(Pet.class)
    .filterByForeignKey(Owner.class, "owner")
    .ordered(true);

The Table annotation associates an entity type with a database table. Similarly, the Column annotation associates a property with a column in the table. Both are used to create the "select" statement in the preceding example. The PrimaryKey and ForeignKey annotations represent relationships between entity types and are used to construct the "where" clause. The Index annotation indicates that a property is part of the default sort order for an entity and is used to construct the "order by" clause.

This code creates a query that selects all actors appearing in a particular film, identified by the "filmID" parameter:

var queryBuilder = QueryBuilder.select(Actor.class)
    .join(FilmActor.class, Actor.class)
    .filterByForeignKey(FilmActor.class, Film.class, "filmID")
    .ordered(true);

Primary and foreign key annotations associated with the Actor, Film, and FilmActor types are used to construct the "join" clause. The resulting query is functionally equivalent to the following SQL:

select actor.* from actor 
join film_actor on actor.actor_id = film_actor.actor_id 
where film_actor.film_id = :filmID
order by actor.last_name asc, actor.first_name asc

Insert, update, and delete operations are also supported. See the pet, catalog, and film service examples for more information.

ElementAdapter

The ElementAdapter class provides access to the contents of an XML DOM Element via the Map interface. For example, the following markup might be used to represent the status of a bank account:

<account id="101">
    <holder>
        <firstName>John</firstName>
        <lastName>Smith</lastName>
    </holder>
    <transactions>
        <credit>
            <amount>100.00</amount>
            <date>10/5/2024</date>
        </credit>
        <credit>
            <amount>50.00</amount>
            <date>10/12/2024</date>
        </credit>
        <debit>
            <amount>25.00</amount>
            <date>10/14/2024</date>
        </debit>
        <credit>
            <amount>75.00</amount>
            <date>10/19/2024</date>
        </credit>
    </transactions>
</account>

This code could be used to load the document and adapt the root element:

var documentBuilderFactory = DocumentBuilderFactory.newInstance();

documentBuilderFactory.setExpandEntityReferences(false);
documentBuilderFactory.setIgnoringComments(true);

var documentBuilder = documentBuilderFactory.newDocumentBuilder();

Document document;
try (var inputStream = getClass().getResourceAsStream("account.xml")) {
    document = documentBuilder.parse(inputStream);
}

var accountAdapter = new ElementAdapter(document.getDocumentElement());

Attribute values can be obtained by prepending an "@" symbol to the attribute name:

var id = accountAdapter.get("@id");

System.out.println(id); // 101

Individual sub-elements can be accessed by name. The text content of an element can be obtained by calling toString() on the returned value; for example:

var holder = (Map<String, Object>)accountAdapter.get("holder");

var firstName = holder.get("firstName");
var lastName = holder.get("lastName");

System.out.println(String.format("%s, %s", lastName, firstName)); // Smith, John

An element's text content can also be accessed via the reserved "." key.

Multiple sub-elements can be obtained by appending an asterisk to the element name:

var transactions = (Map<String, Object>)accountAdapter.get("transactions");
var credits = (List<Map<String, Object>>)transactions.get("credit*");

for (var credit : credits) {
    System.out.println(credit.get("amount"));
    System.out.println(credit.get("date"));
}

ElementAdapter also supports put() and remove() for modifying an element's contents.

Pipe

The Pipe class provides a vehicle by which a producer thread can submit a sequence of elements for retrieval by a consumer thread. It implements the Iterable interface and returns values as they become available, blocking if necessary.

For example, the following code executes a SQL query that retrieves all rows from an employees table:

@Table("employees")
public interface Employee {
    @Column("emp_no")
    @PrimaryKey
    Integer getEmployeeNumber();

    @Column("first_name")
    @Required
    String getFirstName();

    @Column("last_name")
    @Required
    String getLastName();

    @Column("gender")
    @Required
    String getGender();

    @Column("birth_date")
    @Required
    LocalDate getBirthDate();

    @Column("hire_date")
    @Required
    LocalDate getHireDate();
}
var queryBuilder = QueryBuilder.select(Employee.class);

try (var statement = queryBuilder.prepare(getConnection());
    var results = queryBuilder.executeQuery(statement)) {
    return results.stream().map(result -> BeanAdapter.coerce(result, Employee.class)).toList();
}

All of the rows are read and added to the list before anything is returned to the caller. For small result sets, the latency and memory implications associated with this approach might be acceptable. However, for larger data volumes the following alternative may be preferable. The query is executed on a background thread, and the transformed results are streamed back to the caller via a pipe:

var pipe = new Pipe<Employee>(4096, 15000);

var connection = getConnection();

executorService.submit(() -> {
    var queryBuilder = QueryBuilder.select(Employee.class);

    try (var statement = queryBuilder.prepare(connection);
        var results = queryBuilder.executeQuery(statement)) {
        pipe.accept(results.stream().map(result -> BeanAdapter.coerce(result, Employee.class)));
    } catch (SQLException exception) {
        throw new RuntimeException(exception);
    }
});

return pipe;

The pipe is configured with a capacity of 4K elements and a timeout of 15s. Limiting the capacity ensures that the producer does not do more work than necessary if the consumer fails to retrieve all of the data. Similarly, specifying a timeout ensures that the consumer does not wait indefinitely if the producer stops submitting data.

This implementation is slightly more verbose than the first one. However, because no intermediate buffering is required, results are available to the caller sooner, and CPU and memory load is reduced.

For more information, see the employee service example.

Collections and Optionals

The Collections class provides a set of static utility methods for declaratively instantiating list, map, and set values:

public static <E> List<E> listOf(E... elements) { ... }
public static <K, V> Map<K, V> mapOf(Map.Entry<K, V>... entries) { ... }
public static <K, V> Map.Entry<K, V> entry(K key, V value) { ... }
public static <E> Set<E> setOf(E... elements) { ... }

They offer an alternative to similar methods defined by the List, Map, and Set interfaces, which produce immutable instances and do not permit null values. The following immutable variants are also provided:

public static <E> List<E> immutableListOf(E... elements) { ... }
public static <K, V> Map<K, V> immutableMapOf(Map.Entry<K, V>... entries) { ... }
public static <E> Set<E> immutableSetOf(E... elements) { ... }

Collections also includes support for declaring empty lists, maps, and sets:

public static <E> List<E> emptyListOf(Class<E> elementType) { ... }
public static <K, V> Map<K, V> emptyMapOf(Class<K> keyType, Class<V> valueType) { ... }
public static <E> Set<E> emptySetOf(Class<E> elementType) { ... }

These methods can be used in place of similar methods defined by the java.util.Collections class:

var list1 = java.util.Collections.<Integer>emptyList();
var list2 = emptyListOf(Integer.class);

var map1 = java.util.Collections.<String, Integer>emptyMap();
var map2 = emptyMapOf(String.class, Integer.class);

var set1 = java.util.Collections.<Integer>emptySet();
var set2 = emptySetOf(Integer.class);

The Optionals class contains methods for working with optional (or "nullable") values:

public static <T> T coalesce(T... values) { ... }
public static <T, U> U map(T value, Function<? super T, ? extends U> transform) { ... }
public static <T> void perform(T value, Consumer<? super T> action) { ... }

These are provided as a less verbose alternative to similar methods defined by the java.util.Optional class:

var value = 123;

var a = Optional.ofNullable(null).orElse(Optional.ofNullable(null).orElse(value)); // 123
var b = coalesce(null, null, value); // 123
var value = "hello";

var a = Optional.ofNullable(value).map(String::length).orElse(null); // 5
var b = map(value, String::length); // 5
var stringBuilder = new StringBuilder();

Optional.ofNullable("abc").ifPresent(stringBuilder::append); // abc
perform("def", stringBuilder::append); // abcdef

Optionals additionally provides the follwing method, which performs a "safe" cast:

public static <T> T cast(Object value, Class<T> type) {

If the provided value is an instance of the requested type, the cast will succeed. Otherwise, the method will return null. For example:

var text = cast("abc", String.class); // abc

var number = cast("abc", Double.class); // null

Additional Information

This guide introduced the Kilo framework and provided an overview of its key features. For additional information, see the examples.