-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtraining_data.py
31 lines (25 loc) · 1.42 KB
/
training_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch
import torch_geometric.utils as geoutils
from utils import label2onehot
def generate_z_values(batch_size=32, z_dim=32, vertexes=32, b_dim=32, m_dim=32, device=None):
z = torch.normal(mean=0, std=1, size=(batch_size, z_dim), device=device) # (batch,max_len)
z_edge = torch.normal(mean=0, std=1, size=(batch_size, vertexes, vertexes, b_dim), device=device) # (batch,max_len,max_len)
z_node = torch.normal(mean=0, std=1, size=(batch_size, vertexes, m_dim), device=device) # (batch,max_len)
z = z.float().requires_grad_(True)
z_edge = z_edge.float().requires_grad_(True) # Edge noise.(batch,max_len,max_len)
z_node = z_node.float().requires_grad_(True) # Node noise.(batch,max_len)
return z, z_edge, z_node
def load_molecules(data=None, b_dim=32, m_dim=32, device=None, batch_size=32):
data = data.to(device)
a = geoutils.to_dense_adj(
edge_index = data.edge_index,
batch=data.batch,
edge_attr=data.edge_attr,
max_num_nodes=int(data.batch.shape[0]/batch_size)
)
x_tensor = data.x.view(batch_size,int(data.batch.shape[0]/batch_size),-1)
a_tensor = label2onehot(a, b_dim, device)
a_tensor_vec = a_tensor.reshape(batch_size,-1)
x_tensor_vec = x_tensor.reshape(batch_size,-1)
real_graphs = torch.concat((x_tensor_vec,a_tensor_vec),dim=-1)
return real_graphs, a_tensor, x_tensor