-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptim.py
133 lines (104 loc) · 4.42 KB
/
optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, NamedTuple
import jax
import optax
from jax import numpy as jnp
Momentum = Any # An arbitrary pytree of `jnp.ndarrays`
GradMomentEstimates = optax.Params # Same type as parameters
PreconditionerState = NamedTuple # State of a preconditioner
class OptaxSGLDState(NamedTuple):
"""Optax state for the SGLD optimizer"""
count: jnp.ndarray
rng_key: jnp.ndarray
momentum: Momentum
preconditioner_state: PreconditionerState
class Preconditioner(NamedTuple):
"""Preconditioner transformation"""
init: Any
update_preconditioner: Any
multiply_by_m_sqrt: Any
multiply_by_m_inv: Any
multiply_by_m_sqrt_inv: Any
class RMSPropPreconditionerState(PreconditionerState):
grad_moment_estimates: GradMomentEstimates
def get_rmsprop_preconditioner(running_average_factor=0.99, eps=1.e-7):
def init_fn(params):
return RMSPropPreconditionerState(
grad_moment_estimates=jax.tree_map(jnp.zeros_like, params))
def update_preconditioner_fn(gradient, preconditioner_state):
grad_moment_estimates = jax.tree_map(
lambda e, g: e * running_average_factor + \
g**2 * (1 - running_average_factor),
preconditioner_state.grad_moment_estimates, gradient)
return RMSPropPreconditionerState(
grad_moment_estimates=grad_moment_estimates)
def multiply_by_m_inv_fn(vec, preconditioner_state):
return jax.tree_map(lambda e, v: v / (eps + jnp.sqrt(e)),
preconditioner_state.grad_moment_estimates, vec)
def multiply_by_m_sqrt_fn(vec, preconditioner_state):
return jax.tree_map(lambda e, v: v * jnp.sqrt(eps + jnp.sqrt(e)),
preconditioner_state.grad_moment_estimates, vec)
def multiply_by_m_sqrt_inv_fn(vec, preconditioner_state):
return jax.tree_map(lambda e, v: v / jnp.sqrt(eps + jnp.sqrt(e)),
preconditioner_state.grad_moment_estimates, vec)
return Preconditioner(
init=init_fn,
update_preconditioner=update_preconditioner_fn,
multiply_by_m_inv=multiply_by_m_inv_fn,
multiply_by_m_sqrt=multiply_by_m_sqrt_fn,
multiply_by_m_sqrt_inv=multiply_by_m_sqrt_inv_fn)
class IdentityPreconditionerState(PreconditionerState):
"""Identity preconditioner is stateless."""
def get_identity_preconditioner():
def init_fn(_):
return IdentityPreconditionerState()
def update_preconditioner_fn(*args, **kwargs):
return IdentityPreconditionerState()
def multiply_by_m_inv_fn(vec, _):
return vec
def multiply_by_m_sqrt_fn(vec, _):
return vec
def multiply_by_m_sqrt_inv_fn(vec, _):
return vec
return Preconditioner(
init=init_fn,
update_preconditioner=update_preconditioner_fn,
multiply_by_m_inv=multiply_by_m_inv_fn,
multiply_by_m_sqrt=multiply_by_m_sqrt_fn,
multiply_by_m_sqrt_inv=multiply_by_m_sqrt_inv_fn)
def make_cyclical_lr_fn(lr_0, total, num_cycles):
k = total // num_cycles
def schedule_fn(step):
rk = (step % k)
cos_inner = jnp.pi * rk
cos_inner /= k
cos_out = jnp.cos(cos_inner) + 1
lr = 0.5*cos_out*lr_0
return lr
return schedule_fn