-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.py
126 lines (95 loc) · 4.17 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(support):
"""
Sigmoid activation function that finds probabilities to turn ON each unit.
Args:
support: shape is (size of mini-batch, size of layer)
Returns:
on_probabilities: shape is (size of mini-batch, size of layer)
"""
on_probabilities = 1./(1.+np.exp(-support))
return on_probabilities
def softmax(support):
"""
Softmax activation function that finds probabilities of each category
Args:
support: shape is (size of mini-batch, number of categories)
Returns:
probabilities: shape is (size of mini-batch, number of categories)
"""
expsup = np.exp(support-np.sum(support,axis=1)[:,None])
return expsup / np.sum(expsup,axis=1)[:,None]
def sample_binary(on_probabilities):
"""
Sample activations ON=1 (OFF=0) from probabilities sigmoid probabilities
Args:
support: shape is (size of mini-batch, size of layer)
Returns:
activations: shape is (size of mini-batch, size of layer)
"""
activations = 1. * ( on_probabilities >= np.random.random_sample(size=on_probabilities.shape) )
return activations
def sample_categorical(probabilities):
"""
Sample one-hot activations from categorical probabilities
Args:
support: shape is (size of mini-batch, number of categories)
Returns:
activations: shape is (size of mini-batch, number of categories)
"""
cumsum = np.cumsum(probabilities,axis=1)
rand = np.random.random_sample(size=probabilities.shape[0])[:,None]
activations = np.zeros(probabilities.shape)
activations[range(probabilities.shape[0]),np.argmax((cumsum >= rand),axis=1)] = 1
return activations
def load_idxfile(filename):
"""
Load idx file format. For more information : http://yann.lecun.com/exdb/mnist/
"""
import struct
with open(filename,'rb') as _file:
if ord(_file.read(1)) != 0 or ord(_file.read(1)) != 0 :
raise Exception('Invalid idx file: unexpected magic number!')
dtype,ndim = ord(_file.read(1)),ord(_file.read(1))
shape = [struct.unpack(">I", _file.read(4))[0] for _ in range(ndim)]
data = np.fromfile(_file, dtype=np.dtype(np.uint8).newbyteorder('>')).reshape(shape)
return data
def read_mnist(dim=[28,28],n_train=60000,n_test=1000):
"""
Read mnist train and test data. Images are normalized to be in range [0,1]. Labels are one-hot coded.
"""
import scipy.misc
train_imgs = load_idxfile("data/train-images-idx3-ubyte")
train_imgs = train_imgs / 255.
train_imgs = train_imgs.reshape(-1,dim[0]*dim[1])
train_lbls = load_idxfile("data/train-labels-idx1-ubyte")
train_lbls_1hot = np.zeros((len(train_lbls),10),dtype=np.float32)
train_lbls_1hot[range(len(train_lbls)),train_lbls] = 1.
test_imgs = load_idxfile("data/t10k-images-idx3-ubyte")
test_imgs = test_imgs / 255.
test_imgs = test_imgs.reshape(-1,dim[0]*dim[1])
test_lbls = load_idxfile("data/t10k-labels-idx1-ubyte")
test_lbls_1hot = np.zeros((len(test_lbls),10),dtype=np.float32)
test_lbls_1hot[range(len(test_lbls)),test_lbls] = 1.
return train_imgs[:n_train],train_lbls_1hot[:n_train],test_imgs[:n_test],test_lbls_1hot[:n_test]
def viz_rf(weights,it,grid):
"""
Visualize receptive fields and save
"""
fig, axs = plt.subplots(grid[0],grid[1],figsize=(grid[1],grid[0]))#,constrained_layout=True)
plt.subplots_adjust(left=0,bottom=0,right=1,top=1,wspace=0,hspace=0)
imax = abs(weights).max()
for x in range(grid[0]):
for y in range(grid[1]):
axs[x,y].set_xticks([]);
axs[x,y].set_yticks([]);
axs[x,y].imshow(weights[:,:,y+grid[1]*x], cmap="bwr", vmin=-imax, vmax=imax, interpolation=None)
plt.savefig("rf.iter%06d.png"%it)
plt.close('all')
def stitch_video(fig,imgs):
"""
Stitches a list of images and returns a animation object
"""
import matplotlib.animation as animation
return animation.ArtistAnimation(fig, imgs, interval=100, blit=True, repeat=False)