Skip to content

Latest commit

 

History

History
280 lines (242 loc) · 14 KB

README.md

File metadata and controls

280 lines (242 loc) · 14 KB

VEC2FACE: SCALING FACE DATASET GENERATION

Haiyu Wu1Jaskirat Singh2Sicong Tian3

Liang Zheng2Kevin W. Bowyer1

1University of Notre Dame
2The Australian National University
3Indiana University South Bend

This is the official implementation of Vec2Face, an ID and attribute controllable face dataset generation model:

 ✅ that generates face images purely based on the given image features
 ✅ that achieves state-of-the-art performance in five standard test sets among synthetic datasets
 ✅ that first achieves higher accuracy than the same-scale real dataset (on CALFW)
 ✅ that can easily scale the dataset size to 10M images from 200k identities
Please ⭐ if you find it is helpful😄

My Animation

News/Updates

  • [2024/09/15] 🔥 The generated HSFace datasets are available now!
  • [2024/09/05] 🔥 Our paper is on Arxiv now!
  • [2024/09/02] 🔥 We release Vec2Face demo!
  • [2024/09/01] 🔥 We release Vec2Face and HSFace datasets!

🔧 Installation

conda env create -f environment.yaml
conda activate vec2face

Download model weights

  1. The weights of the Vec2Face model and estimators used in this work can be manually from HuggingFace or using python:
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="weights/6DRepNet_300W_LP_AFLW2000.pth", local_dir="./")
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="weights/arcface-r100-glint360k.pth", local_dir="./")
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="weights/magface-r100-glint360k.pth", local_dir="./")
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="weights/vec2face_generator.pth", local_dir="./")

or

python download_vec2face_weights.py
  1. The weights of the FR models trained with HSFace (10k, 20k, 100k, 200k) can be downloaded using python:
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="fr_weights/hsface10k.pth", local_dir="./")
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="fr_weights/hsface20k.pth", local_dir="./")
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="fr_weights/hsface100k.pth", local_dir="./")
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="fr_weights/hsface200k.pth", local_dir="./")

Download datasets

The dataset used for Vec2Face training can be downloaded from manually from HuggingFace or using python:

from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="lmdb_dataset/WebFace4M/WebFace4M.lmdb", local_dir="./")
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="lmdb_dataset/WebFace4M/50000_ids_1022444_ims.npy", local_dir="./")

The generated synthetic datasets HSFace300k can be downloaded at Gdrive and 百度云 (code:vc2f), HSFace10k and HSFace20k can be downloaded using python:

from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="HSFaces/hsface10k.lmdb", local_dir="./", repo_type="dataset")
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="HSFaces/hsface20k.lmdb", local_dir="./", repo_type="dataset")

For HSFace100k and HSFace200k, they are the first 100k and 200k folders in the HSFace300k. You can conveniently use the indices mask to train the model with either of them. The mask files can be downloaded using python:

from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="HSFaces/hsface100k_mask.npy", local_dir="./", repo_type="dataset")
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="HSFaces/hsface200k_mask.npy", local_dir="./", repo_type="dataset")

and add another line in the config file for FR model training:

config.mask="./HSFaces/hsface100k_mask.npy"

Tip: If you want to convert .lmdb to datasets (images), please refer to lmdb2dataset.py.

Model Architecture

⚡Image generation

Generating with reference images

Putting reference images in a folder or collecting image paths in a .txt file for preparation. Then run following code:

python image_generation_with_reference.py \
--image_file "path/of/the/image/file or folder" \
--model_weights weights/vec2face_generator.pth \
--batch_size 5 \
--example 10 \
--name images-of-references

Note that, the input images should be cropped and aligned. If they are not, please use face detectors (e.g., img2pose) to crop the images first. We don't suggest you to modify the code to use the embedding extracted from insightface, because it takes forever to run. (Trust me, I have tried.)

Generating with center/ID features

Before generating images, the identity vectors need to be created/calculated and saved in a .npy file. We provide an example for you, but you can create your own center features (see issue #2).

from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="BooBooWu/Vec2Face", filename="center_feature_examples.npy", local_dir="./")

Image generation with sampled identity features:

python image_generation.py \
--model_weights weights/vec2face_generator.pth \
--batch_size 5 \
--example 1 \
--start_end 0:10 \
--name test \
--center_feature center_feature_examples.npy

Image generation with target yaw angle:

python pose_image_generation.py \
--model_weights weights/vec2face_generator.pth \
--batch_size 5 \
--example 1 \
--start_end 0:10 \
--center_feature center_feature_examples.npy \
--name test \
--pose 45 \
--image_quality 25

Training

Vec2Face training

We only provide the WebFace4M dataset (see here) and the mask that we used for training the model, if you want to use other datasets, please referring the prepare_training_set.py to convert the dataset to .lmdb. Please refer to issue #3 for details.

Once the dataset is ready, modifying the following code to run the multi-node distributed training:

torchrun --nproc_per_node=4 --node_rank=0 --master_addr="host_addr" --master_port=3333 vec2face.py \
--rep_drop_prob 0.1 \
--use_rep \
--batch_size 32 \
--model vec2face_vit_base_patch16 \
--epochs 800 \
--warmup_epochs 5 \
--blr 4e-5 \
--output_dir workspace/pixel_generator/ \
--train_source ./lmdb_dataset/WebFace4M/WebFace4M.lmdb \
--mask lmdb_dataset/WebFace4M/50000_ids_1022444_ims.npy \
--accum_iter 1

If training on one node, run with the following command:

torchrun --nproc_per_node=4 vec2face.py \
--rep_drop_prob 0.1 \
--use_rep \
--batch_size 32 \
--model vec2face_vit_base_patch16 \
--epochs 800 \
--warmup_epochs 5 \
--blr 4e-5 \
--output_dir workspace/pixel_generator/ \
--train_source ./lmdb_dataset/WebFace4M/WebFace4M.lmdb \
--mask lmdb_dataset/WebFace4M/50000_ids_1022444_ims.npy \
--accum_iter 1

FR model training

We borrowed the code from SOTA-Face-Recognition-Train-and-Test to train the model. The random erasing function could be added after line 84 in data_loader_train_lmdb.py, as shown below:

transform = transforms.Compose(
            [
                transforms.Resize((112, 112)),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
                transforms.RandomErasing()
            ]
        )

Please follow the guidance of SOTA-Face-Recognition-Train-and-Test for the rest of training process.

Since some people requested for the config file to reproduce the performance, here is the example of training with HSFace10K:

from easydict import EasyDict

config = EasyDict()

config.prefix = "arcface-r50-vec2face-hsface10k"
config.head = "arcface"
config.input_size = [112, 112]
config.embedding_size = 512
config.depth = "50"
config.batch_size = 128
config.weight_decay = 5e-4
config.lr = 0.1
config.momentum = 0.9
config.epochs = 26
config.margin = 0.5
config.fp16 = True
config.sample_rate = 1.0
config.num_ims = 500000
config.reduce_lr = [12, 20, 24]
config.train_source = "./HSFaces/hsface10k.lmdb"
config.val_list = ["lfw", "cfp_fp", "agedb_30", "calfw", "cplfw"]
config.mask = None
config.augment = True
config.mode = "se"

Performance

Datasets in 0.5M scale

This table compares the existing synthetic dataset generation methods on five standard face recognition test sets. The model trained with HSFace10K has better performance on CALFW than that trained with real dataset.

Training sets # images LFW CFP-FP CPLFW AgeDB CALFW Avg.
IDiff-Face 0.5M 98.00 85.47 80.45 86.43 90.65 88.20
DCFace 0.5M 98.55 85.33 82.62 89.70 91.60 89.56
Arc2Face 0.5M 98.81 91.87 85.16 90.18 92.63 91.73
DigiFace 1M 95.40 87.40 78.87 76.97 78.62 83.45
SynFace 0.5M 91.93 75.03 70.43 61.63 74.73 74.75
SFace 0.6M 91.87 73.86 73.20 71.68 77.93 77.71
IDnet 0.5M 92.58 75.40 74.25 63.88 79.90 79.13
ExFaceGAN 0.5M 93.50 73.84 71.60 78.92 82.98 80.17
SFace2 0.6M 95.60 77.11 74.60 77.37 83.40 81.62
Langevin-Disco 0.6M 96.60 73.89 74.77 80.70 87.77 82.75
HSFace10K(Ours) 0.5M 98.87 88.97 85.47 93.12 93.57 92.00
CASIA-WebFace (Real) 0.49M 99.38 96.91 89.78 94.50 93.35 94.79

Dataset scaling up to 300K identities and 15M images

This is the uniqueness of the proposed Vec2Face, which can easily scale the dataset size up.

Datasets # images LFW CFP-FP CPLFW AgeDB CALFW Avg.
HSFace10K 0.5M 98.87 88.97 85.47 93.12 93.57 92.00
HSFace20K 1M 98.87 89.87 86.13 93.85 93.65 92.47
HSFace100K 5M 99.25 90.36 86.75 94.38 94.12 92.97
HSFace200K 10M 99.23 90.81 87.30 94.22 94.52 93.22
HSFace300K 15M 99.30 91.54 87.70 94.45 94.58 93.52
CASIA-WebFace (Real) 0.49M 99.38 96.91 89.78 94.50 93.35 94.79

Other challenging test sets

We test the model performance on other four datasets, Hadrian (facial hair), Eclipse (face exposure), SLLFW (similar-looking), and DoppelVer (doppelganger).

Datasets Hadrian Eclipse SLLFW DoppelVer
HSFace10K 69.47 64.55 92.87 86.91
HSFace20K 75.22 67.55 94.37 88.91
HSFace100K 80.00 70.35 95.58 90.39
HSFace200K 79.85 71.12 95.70 89.86
HSFace300K 81.55 71.35 95.95 90.49
CASIA-WebFace (Real) 77.82 68.52 96.95 95.11

Acknowledgements

  • Thanks to the WebFace4M creators for providing such a high-quality facial dataset❤️.
  • Thanks to Hugging Face for providing a handy dataset and model weight management platform❤️.
  • Thanks to JiaquanYe for helping the training stability❤️.

Citation

If you find Vec2Face useful for your research, please consider citing us😄:

@article{wu2024vec2face,
  title={Vec2Face: Scaling Face Dataset Generation with Loosely Constrained Vectors},
  author={Wu, Haiyu and Singh, Jaskirat and Tian, Sicong and Zheng, Liang and Bowyer, Kevin W.},
  journal={arXiv preprint arXiv:2409.02979},
  year={2024}
}