forked from ch-nry/nozoid_nozori
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathm68_VCO_LOOP.ino
221 lines (203 loc) · 6.77 KB
/
m68_VCO_LOOP.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
// --------------------------------------------------------------------------
// This file is part of the NOZORI firmware.
//
// NOZORI firmware is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// NOZORI firmware is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with NOZORI firmware. If not, see <http://www.gnu.org/licenses/>.
// --------------------------------------------------------------------------
// VCO LOOP : random value to generate a slowlly evolving LFO, or VCO
// Pot 1 : fq
// Pot 2 : Mod fq
// Pot 3 : nb step (1 .. 32)
// Pot 4 : nb step modulation
// Pot 5 : mutate speed
// Pot 6 : mutation speed modulation
// CV 1 : fq (1V/Oct)
// CV 2 : fq modulation
// CV 3 : step modulation value
// CV 4 : Mutation speed modulation value
// IN 1 : gain
// IN 2 : pan
// Selecteur3 : interpolation : none / linear / bubic
// OUT 1 : OUT X
// OUT 2 : OUT Y
// LED 1 : CV2
// LED 2 : CV4
uint32_t current_step_nb, pos_old;
// can be optimised to switch to 96KHz ???
inline void VCO_LOOP_init_() {
uint32_t i;
send_dac(0x08,0b000000001); // sampling control (usb , 250fs, 48K, clock div 2, clk out, active)
for (i=0; i<32; i++) { thomas[0][i] = random32(); }
for (i=0; i<32; i++) { thomas[1][i] = random32(); }
for (i=0; i<32; i++) { thomas[2][i] = random32(); }
rnd_all_save = 0;
init_chaos();
}
inline void VCO_LOOP_loop_() {
int32_t tmpS, CV3_value, CV4_value;
uint32_t i, tmp, toggle;
int32_t chaosX, chaosY, chaosZ;
int32_t chaosdX, chaosdY, chaosdZ;
uint32_t variation_speed;
int32_t pot3_tmp, pot5_tmp;
filter16_nozori_68
test_connect_loop_68();
toggle = get_toggle();
toggle_global = toggle;
chaos(15); // for default mod values
if (CV3_connect < 60) CV3_value = CV_filter16_out[index_filter_cv3] - CV3_0V; else CV3_value = chaos_dy>>16;
if (CV4_connect < 60) CV4_value = CV_filter16_out[index_filter_cv4] - CV4_0V; else CV4_value = chaos_dz>>16;
CV3_value = min(0x7FFF,max(-0x7FFF,CV3_value));
CV4_value = min(0x7FFF,max(-0x7FFF,CV4_value));
// frequency control
macro_fq_in
freq += 48 << 18;
macro_1VOct_CV1
macro_FqMod_fine(pot2,CV2)
macro_fq2increment
increment_0 = increment1*3;
// STEP
pot3_tmp = CV_filter16_out[index_filter_pot3];
tmpS = CV3_value;
tmpS *= CV_filter16_out[index_filter_pot4];
tmpS >>= 16;
pot3_tmp += tmpS;
pot3_tmp = min(0xFFFF, max(0,pot3_tmp));
tmp = pot3_tmp >> 11; // 0..32
nb_step = tmp+3;
// variation speed
pot5_tmp = CV_filter16_out[index_filter_pot5];
tmpS = CV4_value;
tmpS *= CV_filter16_out[index_filter_pot6];
tmpS >>= 16;
pot5_tmp += tmpS;
pot5_tmp = min(0xFFFF, max(0,pot5_tmp));
pot5_tmp *= pot5_tmp>>1;
variation_speed = pot5_tmp >> 15;
// chaos
loop_index = (loop_index+1) % 35;
chaosX = thomas[0][loop_index];
chaosY = thomas[1][loop_index];
chaosZ = thomas[2][loop_index];
chaosdX = fast_sin(chaosY)^0x80000000;
chaosdY = fast_sin(chaosZ)^0x80000000;
chaosdZ = fast_sin(chaosX)^0x80000000;
chaosdX >>= 17;
chaosdX *= variation_speed;
chaosdY >>= 17;
chaosdY *= variation_speed;
chaosdZ >>= 17;
chaosdZ *= variation_speed;
thomas[0][loop_index] += chaosdX>>5;
thomas[1][loop_index] += chaosdY>>5;
thomas[2][loop_index] += chaosdZ>>5;
// LEDS
led2((CV3_value+0x7FFF)>>7);
led4((CV4_value+0x7FFF)>>7);
}
inline void VCO_LOOP_audio_() {
uint32_t current_tick, increment1;
uint32_t current_step, tmp,tmp2, outX, outY, toggle;
int32_t tmpS;
uint32_t pos, interpol;
uint32_t out, out2;
VCO1_phase += increment_0;
toggle = toggle_global;
// step
if (VCO1_phase < increment_0) { // debut de phase, pour ne changer de nb de step seulement au debut de phae
current_step_nb = nb_step;
}
current_step = current_step_nb;
pos = VCO1_phase / (0xFFFFFFFF/current_step);
interpol = (VCO1_phase * current_step) >> 16;
if (pos > current_step) { // rounding error
pos = current_step;
interpol = 0xFFFF;
}
if (pos != pos_old) {
pos_old = pos;
previous_interpol_valueX = last_interpol_valueX;
previous_interpol_valueY = last_interpol_valueY;
last_interpol_valueX = current_interpol_valueX;
last_interpol_valueY = current_interpol_valueY;
current_interpol_valueX = current_interpol_valueX2;
current_interpol_valueY = current_interpol_valueY2;
current_interpol_valueX2 = abs((int32_t)thomas[0][pos]);
current_interpol_valueY2 = abs((int32_t)thomas[1][pos]);
}
switch(toggle) {
case 0: // saw
tmpS = current_interpol_valueX - 0x40000000;
tmpS = tmpS >> 15;
tmpS *= interpol;
outX = 0x80000000 - current_interpol_valueX + tmpS;
tmpS = current_interpol_valueY - 0x40000000;
tmpS = tmpS >> 16;
tmpS *= interpol;
outY = 0x40000000 + tmpS;
outX -= outX>>2;
outX += 1<<28;
outY -= outY>>2;
outY += 1<<28;
break;
/*case 0: // saw
tmpS = current_interpol_valueX - 0x40000000;
tmpS = tmpS >> 16;
tmpS *= interpol;
outX = 0x40000000 + tmpS;
tmpS = current_interpol_valueY - 0x40000000;
tmpS = tmpS >> 16;
tmpS *= interpol;
outY = 0x40000000 + tmpS;
outX -= outX>>2;
outX += 1<<28;
outY -= outY>>2;
outY += 1<<28;
break; */
case 1: // no interpolation (square)
outX = current_interpol_valueX;
outY = current_interpol_valueY;
outX -= outX>>2;
outX += 1<<28;
outY -= outY>>2;
outY += 1<<28;
break;
/* case 1: // linear interpolation
tmpS = current_interpol_valueX - last_interpol_valueX;
tmpS = tmpS >> 16;
tmpS *= interpol;
outX = last_interpol_valueX + tmpS;
tmpS = current_interpol_valueY - last_interpol_valueY;
tmpS = tmpS >> 16;
tmpS *= interpol;
outY = last_interpol_valueY + tmpS;
outX -= outX>>2;
outX += 1<<28;
outY -= outY>>2;
outY += 1<<28;
break;
*/
case 2: // cubic interpolation
outX = tabread4(previous_interpol_valueX>>17, last_interpol_valueX>>17, current_interpol_valueX>>17, current_interpol_valueX2>>17, interpol);
outX *= 90000;
outX += (((65535*2) - 90000)/2)<<14;
outY = tabread4(previous_interpol_valueY>>17, last_interpol_valueY>>17, current_interpol_valueY>>17, current_interpol_valueY2>>17, interpol);
outY *= 90000;
outY += (((65535*2) - 90000)/2)<<14;
break;
}
// Les gains on ete fait plus clean sur RND_LOOP (changer si necessaire...)
out = outX<<1;
out2 = outY<<1;
macro_out_gain_pan_stereo2
}