-
-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy path6_PSO+PCA.py
154 lines (132 loc) · 4.62 KB
/
6_PSO+PCA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from sklearn.externals import joblib
import os
from svmutil import svm_train
import numpy as np
import glob
import random
import copy
n = 2000
train_feat_path = './features/train'
birds = 20 # size of population
maxgen = 50
pos = [] # population of class
speed = []
bestpos = []
initpos = []
tempfit = []
birdsbestpos = []
fds = []
dict_fds = []
labels = []
allbestpos = []
w = 1 # best belongs to [0.8,1.2]
c1 = 2
c2 = 2
r1 = random.uniform(0,1)
r2 = random.uniform(0,1)
m = 'pso'
def zeroMean(dataMat):
meanVal=np.mean(dataMat,axis=0)
# joblib.dump(meanVal,'./features/PCA/meanVal_train_%s.mean' %m)
newData=dataMat-meanVal
return newData,meanVal
def pca(dataMat,n):
print "Start to do PCA..."
newData,meanVal=zeroMean(dataMat)
# covMat=np.cov(newData,rowvar=0)
# eigVals,eigVects=np.linalg.eig(np.mat(covMat))
# joblib.dump(eigVals,'./features/PCA/eigVals_train_%s.eig' %m,compress=3)
# joblib.dump(eigVects,'./features/PCA/eigVects_train_%s.eig' %m,compress=3)
eigVals = joblib.load('./features/PCA/eigVals_train_%s.eig' %m)
eigVects = joblib.load('./features/PCA/eigVects_train_%s.eig' %m)
eigValIndice=np.argsort(eigVals)
n_eigValIndice=eigValIndice[-1:-(n+1):-1]
n_eigVect=eigVects[:,n_eigValIndice]
# joblib.dump(n_eigVect,'./features/PCA/n_eigVects_train_%s_%s.eig' %(m,n))
lowDDataMat=newData*n_eigVect
return lowDDataMat
for feat_path in glob.glob(os.path.join(train_feat_path, '*.feat')):
data = joblib.load(feat_path)
fds.append(data[:-1])
labels.append(data[-1])
fds = np.array(fds,dtype = float)
fds= pca(fds,n)
fds = np.array(fds,dtype = float)
for i in range(len(fds[:,0])):
dict_data = dict(zip(range(len(data))[1:],fds[i,:]))
dict_fds.append(dict_data)
for i in range(birds):
pos.append([])
speed.append([])
bestpos.append([])
initpos.append([])
tempfit.append([])
def CalDis(list):
fitness=0.0
param = '-t 2 -v 3 -c %s -g %s' %(list[0],list[1])
fitness = svm_train(labels, dict_fds, param)
return fitness
for i in range(birds): #initial all birds' pos,speed
pos[i].append(random.uniform(10,30))
pos[i].append(random.uniform(0.5e-06, 1e-06)) # 1/num_features
speed[i].append(float(0))
speed[i].append(float(0))
# speed[i].append(random.uniform(-10,10))
# speed[i].append(random.uniform(-0.00002,0.00002))
bestpos[i] = copy.deepcopy(pos[i])
initpos[i] = copy.deepcopy(pos[i])
def FindBirdsMostPos():
best=CalDis(bestpos[0])
index = 0
for i in range(birds):
print "\n>>>>>The %d'd time to find globel best pos. Total %d times.\n" %(i+1, birds)
tempfit[i] = CalDis(bestpos[i])
if tempfit[i] > best:
best = tempfit[i]
index = i
print '------- %d: %f' %(index, best)
return best, bestpos[index]
print "\n-------------------------Initial Globel Best Pos----------------------------------\n"
best_predict, birdsbestpos = FindBirdsMostPos() #initial birdsbestpos
print "\n-------------------------Done Globel Best Pos----------------------------------\n"
def NumMulVec(num,list): #result is in list
for i in range(len(list)):
list[i] *= num
return list
def VecSubVec(list1,list2): #result is in list1
for i in range(len(list1)):
list1[i] -= list2[i]
return list1
def VecAddVec(list1,list2): #result is in list1
for i in range(len(list1)):
list1[i] += list2[i]
return list1
def UpdateSpeed():
#global speed
for i in range(birds):
temp1 = NumMulVec(w,speed[i][:])
temp2 = VecSubVec(bestpos[i][:],pos[i])
temp2 = NumMulVec(c1*r1,temp2[:])
temp1 = VecAddVec(temp1[:],temp2)
temp2 = VecSubVec(birdsbestpos[:],pos[i])
temp2 = NumMulVec(c2*r2,temp2[:])
speed[i] = VecAddVec(temp1,temp2)
def UpdatePos():
print "Update Pos."
global bestpos,birdsbestpos,tempfit
for i in range(birds):
if pos[i][0]+speed[i][0] > 0 and pos[i][1]+speed[i][1] > 0:
VecAddVec(pos[i],speed[i])
if CalDis(pos[i]) > tempfit[i]:
bestpos[i] = copy.deepcopy(pos[i])
best_predict, birdsbestpos = FindBirdsMostPos()
return best_predict, birdsbestpos
for asd in range(maxgen):
print "\n>>>>>>>>The %d'd time to update parameters. Total %d times\n" %(asd+1, maxgen)
UpdateSpeed()
best_predict, best_para = UpdatePos()
allbestpos.append([best_para, best_predict])
f=open('result/PSO_%s-%s-%s.txt' %(birds,maxgen,n),'w')
f.write(str(allbestpos))
f.close()
print "After %d iterations\nthe best C is: %f\nthe best gamma is: %f" %(maxgen,best_para[0],best_para[1])