forked from BartoszMilewski/XOperad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Operad.hs
110 lines (94 loc) · 3.51 KB
/
Operad.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE GADTs #-}
module Operad where
import Numbers
import Vector
import Forest
import Control.Comonad
import Data.Constraint
---------
-- Operad
---------
-- Composition:
-- \ / \|/
-- | | Forest m n
-- \ /
-- | f n
class (Graded f) => Operad (f :: Nat -> *) where
ident :: f (S Z)
compose :: f n -> Forest f m n -> f m
-- Free Operad
data Free (f :: Nat -> *) n where
Ident :: Free f (S Z)
Apply :: f n -> Forest (Free f) i n -> Free f i
instance (Graded f) => Graded (Free f) where
grade Ident = SS SZ
grade (Apply _ as) = inputs grade as
instance (Graded f) => Operad (Free f) where
ident = Ident
-- compose :: Free f n -> Forest (Free f) m n -> Free f m
compose Ident (Cons (x :: Free f n) Nil) = case plusZ :: Dict (n ~ (n + Z)) of Dict -> x
-- | | | | n
-- | | k xs
-- \ / k
-- | f
-- Apply f xs :: Free f n, where f :: f k, xs :: Forest (Free f) n k
-- | | | | | | m
-- | | | | n ys
-- ys :: Forest (Free f) m n
-- result :: Free f m = Apply f (combine zs), where f :: f k, zs :: Forest (Free f) m k
compose (Apply f xs) ys = Apply f (combine xs ys)
where
-- Forests form a category
combine :: Forest (Free f) n k -> Forest (Free f) m n -> Forest (Free f) m k
combine Nil Nil = Nil
--combine (Cons t ts) us
-- t :: Free f i
-- ts :: Forest (Free f) n k
-- us :: Forest (Free f) m (i + n)
-- result :: Forest (Free f) m (k + 1)
-- (i + n) (k + 1) m (i + n) m (k + 1)
combine (Cons (t :: Free f i) (ts :: Forest (Free f) n k)) (us :: Forest (Free f) m (i + n)) =
splitForest (grade t) (inputs grade ts) us (\(f1, f2) -> Cons (compose t f1) (combine ts f2))
idents :: Operad f => SNat n -> Forest f n n
idents SZ = Nil
idents (SS n) = ident `Cons` idents n
-- Create a forest: idents k ++ f n ++ idents m
plantTreeAt :: Operad f => SNat k -> SNat m -> f n -> Forest f (k + (n + m)) (k + S m)
-- f `Cons` idents m :: Forest (n + m) (S m)
plantTreeAt k m f = prependIdents k (f `Cons` idents m)
where
prependIdents :: Operad f => SNat k -> Forest f m n -> Forest f (k + m) (k + n)
prependIdents SZ forest = forest
prependIdents (SS n) forest = ident `Cons` prependIdents n forest
-- Monad
data M f a where
M :: f n -> Vec n a -> M f a
type OperadAlgebra f a = M f a -> a
type OperadCoalgebra f a = a -> M f a
-- Comonad
newtype W f a = W { runW :: forall n. f n -> Vec n a }
instance Functor (W f) where
fmap g (W k) = W $ \f -> fmap g (k f)
instance Operad f => Comonad (W f) where
extract (W k) = case k ident of
-- ident produces a singleton vector
VCons a VNil -> a
-- duplicate :: W f -> W (W f)
-- k :: forall n. f n -> Vec n a
-- result :: forall m. f m -> Vec m (W f)
duplicate (W act :: W f a) = W $ \f -> go f SZ (grade f)
where
-- n increases, m decreases, n starts as zero, m starts as (grade f)
go :: f (n + m) -> SNat n -> SNat m -> Vec m (W f a)
go _ _ SZ = VNil
--axiom: n + S m ~ S (n + m)
go f n (SS m) = case succAssoc n m of
Dict -> W act' `VCons` go f (SS n) m
where
act' :: f k -> Vec k a
act' fk = middleV n (grade fk) m (act (f `compose` plantTreeAt n m fk))