forked from mkocabas/CoordConv-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CoordConv.py
124 lines (89 loc) · 3.8 KB
/
CoordConv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
import torch.nn as nn
class AddCoordsTh(nn.Module):
def __init__(self, x_dim=64, y_dim=64, with_r=False):
super(AddCoordsTh, self).__init__()
self.x_dim = x_dim
self.y_dim = y_dim
self.with_r = with_r
def forward(self, input_tensor):
"""
input_tensor: (batch, c, x_dim, y_dim)
"""
batch_size_tensor = input_tensor.shape[0]
xx_ones = torch.ones([1, self.y_dim], dtype=torch.int32)
xx_ones = xx_ones.unsqueeze(-1)
xx_range = torch.arange(self.x_dim, dtype=torch.int32).unsqueeze(0)
xx_range = xx_range.unsqueeze(1)
xx_channel = torch.matmul(xx_ones, xx_range)
xx_channel = xx_channel.unsqueeze(-1)
yy_ones = torch.ones([1, self.x_dim], dtype=torch.int32)
yy_ones = yy_ones.unsqueeze(1)
yy_range = torch.arange(self.y_dim, dtype=torch.int32).unsqueeze(0)
yy_range = yy_range.unsqueeze(-1)
yy_channel = torch.matmul(yy_range, yy_ones)
yy_channel = yy_channel.unsqueeze(-1)
xx_channel = xx_channel.permute(0, 3, 2, 1)
yy_channel = yy_channel.permute(0, 3, 2, 1)
xx_channel = xx_channel.float() / (self.x_dim - 1)
yy_channel = yy_channel.float() / (self.y_dim - 1)
xx_channel = xx_channel * 2 - 1
yy_channel = yy_channel * 2 - 1
xx_channel = xx_channel.repeat(batch_size_tensor, 1, 1, 1)
yy_channel = yy_channel.repeat(batch_size_tensor, 1, 1, 1)
ret = torch.cat([input_tensor, xx_channel, yy_channel], dim=1)
if self.with_r:
rr = torch.sqrt(torch.pow(xx_channel - 0.5, 2) + torch.pow(yy_channel - 0.5, 2))
ret = torch.cat([ret, rr], dim=1)
return ret
class CoordConvTh(nn.Module):
"""CoordConv layer as in the paper."""
def __init__(self, x_dim, y_dim, with_r, *args, **kwargs):
super(CoordConvTh, self).__init__()
self.addcoords = AddCoordsTh(x_dim=x_dim, y_dim=y_dim, with_r=with_r)
self.conv = nn.Conv2d(*args, **kwargs)
def forward(self, input_tensor):
ret = self.addcoords(input_tensor)
ret = self.conv(ret)
return ret
'''
An alternative implementation for PyTorch with auto-infering the x-y dimensions.
'''
class AddCoords(nn.Module):
def __init__(self, with_r=False):
super().__init__()
self.with_r = with_r
def forward(self, input_tensor):
"""
Args:
input_tensor: shape(batch, channel, x_dim, y_dim)
"""
batch_size, _, x_dim, y_dim = input_tensor.size()
xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1)
yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2)
xx_channel = xx_channel.float() / (x_dim - 1)
yy_channel = yy_channel.float() / (y_dim - 1)
xx_channel = xx_channel * 2 - 1
yy_channel = yy_channel * 2 - 1
xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
ret = torch.cat([
input_tensor,
xx_channel.type_as(input_tensor),
yy_channel.type_as(input_tensor)], dim=1)
if self.with_r:
rr = torch.sqrt(torch.pow(xx_channel.type_as(input_tensor) - 0.5, 2) + torch.pow(yy_channel.type_as(input_tensor) - 0.5, 2))
ret = torch.cat([ret, rr], dim=1)
return ret
class CoordConv(nn.Module):
def __init__(self, in_channels, out_channels, with_r=False, **kwargs):
super().__init__()
self.addcoords = AddCoords(with_r=with_r)
in_size = in_channels+2
if with_r:
in_size += 1
self.conv = nn.Conv2d(in_size, out_channels, **kwargs)
def forward(self, x):
ret = self.addcoords(x)
ret = self.conv(ret)
return ret