-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtorch_transformer.py
220 lines (175 loc) · 9.05 KB
/
torch_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch
import torch.nn as nn
import torchtext
import math
import spacy
data_eng = torchtext.data.Field(sequential=True, use_vocab=True, tokenize='spacy', tokenizer_language='en_core_web_sm',
init_token='<sos>', eos_token='<eos>', lower=True)
data_ger = torchtext.data.Field(sequential=True, use_vocab=True, tokenize='spacy', tokenizer_language='de_core_news_sm',
init_token='<sos>', eos_token='<eos>', lower=True)
train_data, val_data, test_data = torchtext.datasets.Multi30k.splits(exts=('.de', '.en'), fields=(data_ger, data_eng))
data_eng.build_vocab(train_data)
data_ger.build_vocab(train_data)
data_load = torchtext.data.BucketIterator(dataset=train_data, batch_size=64, shuffle=False)
test_load = torchtext.data.BucketIterator(dataset=test_data, batch_size=64, shuffle=False)
# data_load
# [[word1_sentence1, word2_sentence1, ... , word_n_sentence1],
# [word1_sentence2, word2_sentence2, ... , word_n_sentence2],
# :
# :
# :
# [word1_sentence_n, word2_sentence_n, ... , word_n_sentence_n]]
# Reason: So that a batch of words at 'n'th position can be used as input to perform operation on words at 'n+1'th position
# Example: predict[batch of words at 'n+1'th position] = model(batch of words at 'n'th position)
for i in data_load:
print(i.src.T.shape, i.trg.T.shape)
for word in i.trg.T[-3]:
print(data_eng.vocab.itos[word], end=' ')
for word in i.src.T[-3]:
print(data_ger.vocab.itos[word], end=' ')
break
print('\n')
class Model(torch.nn.Module):
def __init__(self, embed_dim_src, embed_dim_trg, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout, input_vocab_size, outut_vocab_size, src_pad_idx, max_length, device):
super(Model, self).__init__()
self.embed_layer_src = torch.nn.Embedding(num_embeddings=input_vocab_size, embedding_dim=embed_dim_src)
self.embed_layer_trg = torch.nn.Embedding(num_embeddings=outut_vocab_size, embedding_dim=embed_dim_trg)
self.transformer = torch.nn.Transformer(d_model=embed_dim_src, nhead=nhead, num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers, dim_feedforward=dim_feedforward,
dropout=dropout, device=device, batch_first=False)
self.linear = torch.nn.Linear(embed_dim_src, outut_vocab_size)
self.dropout = torch.nn.Dropout(dropout)
self.embed_dim_src = embed_dim_src
self.src_pad_idx = src_pad_idx
self.max_len = max_length
def positional_encoding(self, x):
seq_len = x.shape[1]
# print(seq_len, '----')
indices = torch.arange(seq_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, self.embed_dim_src, 2) * (-math.log(10000.0) / self.embed_dim_src))
pe = torch.zeros(x.shape[1], 1, self.embed_dim_src)
pe[:, 0, 0::2] = torch.sin(indices * div_term)
pe[:, 0, 1::2] = torch.cos(indices * div_term)
# print(pe.shape, '------------')
return pe.transpose(0, 1).to(device)
def make_src_mask(self, src):
src_mask = src == self.src_pad_idx
return src_mask
def forward(self, src, trg):
# print(src.dtype, src.shape)
embed_src = self.embed_layer_src(src)
# print(embed_src.shape, '================',trg.shape)
embed_src += self.positional_encoding(src)
embed_src = self.dropout(embed_src)
embed_trg = self.dropout(self.embed_layer_trg(trg))
src_mask = self.make_src_mask(src).to(device)
trg_mask = self.transformer.generate_square_subsequent_mask(trg.shape[1]).to(device)
# print(embed_src.transpose(0, 1).shape, embed_trg.transpose(0, 1).shape, src_mask.shape, trg_mask.shape)
out = self.transformer(embed_src.transpose(0, 1), embed_trg.transpose(0, 1), src_key_padding_mask=src_mask, tgt_mask=trg_mask.T)
out = self.linear(out)
return out
loss_list = []
device = 'cuda' if torch.cuda.is_available() else 'cpu'
embed_src_dim = 288
embed_trg_dim = 288
nhead = 12
num_encoder_layers = 6
num_decoder_layers = 6
dim_feed_forward = 4
dropout = 0.1
src_vocab_size = len(data_ger.vocab)
trg_vocab_size = len(data_eng.vocab)
src_pad_idx = data_eng.vocab.stoi['<pad>']
print(len(data_load), device)
def translate_sentence(model, sentence, german, english, device, max_length=50):
# Load german tokenizer
spacy_ger = spacy.load("de")
# Create tokens using spacy and everything in lower case (which is what our vocab is)
if type(sentence) == str:
tokens = [token.text.lower() for token in spacy_ger(sentence)]
else:
tokens = [token.lower() for token in sentence]
# Add <SOS> and <EOS> in beginning and end respectively
tokens.insert(0, german.init_token)
tokens.append(german.eos_token)
# Go through each german token and convert to an index
text_to_indices = [german.vocab.stoi[token] for token in tokens]
# Convert to Tensor
sentence_tensor = torch.LongTensor(text_to_indices).unsqueeze(1).to(device)
outputs = [english.vocab.stoi["<sos>"]]
for i in range(max_length):
trg_tensor = torch.LongTensor(outputs).unsqueeze(1).to(device)
with torch.no_grad():
output = model(sentence_tensor, trg_tensor)
best_guess = output.argmax(2)[-1, :].item()
outputs.append(best_guess)
if best_guess == english.vocab.stoi["<eos>"]:
break
translated_sentence = [english.vocab.itos[idx] for idx in outputs]
# remove start token
return translated_sentence[1:]
class TransformerModel(torch.nn.Module):
def __init__(self, inp_vocab_size, out_vocab_size, embed_dim, dim_feedforward, src_pad_idx,
dropout, nhead, num_encoder_layers, num_decoder_layers, device):
super(TransformerModel, self).__init__()
self.src_embed = torch.nn.Embedding(inp_vocab_size, embed_dim)
self.trg_embed = torch.nn.Embedding(out_vocab_size, embed_dim)
self.transformer = torch.nn.Transformer(d_model=embed_dim, nhead=nhead,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers, dim_feedforward=dim_feedforward,
dropout=dropout)
self.src_pad_idx = src_pad_idx
self.src_embed_dim = embed_dim
self.drop = torch.nn.Dropout(dropout)
self.last = torch.nn.Linear(embed_dim, out_vocab_size)
def make_src_mask(self, x):
mask = x.transpose(0, 1) == self.src_pad_idx
return mask
def positional_encoder(self, x):
seq_len = x.shape[0]
indices = torch.arange(seq_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, self.src_embed_dim, 2) * (-math.log(10000.0)/self.src_embed_dim))
pe = torch.zeros_like(x)
pe[:, 0, 0::2] = torch.sin(indices * div_term)
pe[:, 0, 1::2] = torch.cos(indices * div_term)
return pe.to(device)
def forward(self, src, trg):
embed_src = self.src_embed(src)
embed_src +=self.positional_encoder(embed_src)
embed_src = self.drop(embed_src)
embed_trg = self.drop(self.trg_embed(trg))
mask_src = self.make_src_mask(src).to(device)
mask_trg = self.transformer.generate_square_subsequent_mask(trg.shape[0]).to(device)
out = self.transformer(embed_src, embed_trg, src_key_padding_mask=mask_src, tgt_mask=mask_trg)
out = self.last(out)
return out
model = TransformerModel(embed_dim=embed_src_dim, num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers, nhead=nhead, dim_feedforward=dim_feed_forward, dropout=dropout,
inp_vocab_size=src_vocab_size, out_vocab_size=trg_vocab_size, src_pad_idx=src_pad_idx,
device=device).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
criterion = torch.nn.CrossEntropyLoss(ignore_index=data_eng.vocab.stoi['<pad>'])
sentence = 'ein Mann, der auf einem Turm neben einem Vogel steht.'
num_epochs = 20
for epoch in range(1, num_epochs):
epoch_loss = 0
model.train()
for num, i in enumerate(data_load):
i.src = i.src.to(device)
i.trg = i.trg.to(device)
output = model(i.src, i.trg[:-1])
if num >= 200 and num % 200 == 0:
print(epoch, '---', num)
output = output.reshape(-1, output.shape[2])
tgt = i.trg[1:].reshape(-1)
# print(trg.shape, output.shape)
loss = criterion(output, tgt)
epoch_loss += loss
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)
optimizer.step()
loss_list.append(epoch_loss)
print(epoch, epoch_loss, min(loss_list))
model.eval()
print(translate_sentence(model, sentence, data_ger, data_eng, device))