The design of libircd
is fully-asynchronous, single-thread-oriented. No code
in the library blocks the process. All operations are conducted on top of
a single boost::asio::io_service
which must be supplied by the executable
linking to libircd
. That io_service
must be orchestrated by the executable
at its discretion; typically the embedder's call to ios.run()
is the only
place the process will block.
Generally, applications are limited by one or more of the following bounds: Computing, Memory (Space), Memory (Peripheral I/O)
libircd
is dominated by the I/O bound.
Our effort is rooted in the above assumption. The single-threaded approach ensures there is an uninterrupted, uncontended, predictable execution which is easy for developers to reason about intuitively with sequential-consistency in a cooperative coroutine model. If there are periods of execution which are computationally intense like parsing, hashing, cryptography, etc: this is absorbed in lieu of thread synchronization and bus contention.
This system achieves scale through running multiple independent instances which synchronize at the application-logic level through passing the application's own messages.
✝ However, do not assume a truly threadless execution for the entire address
space. If there is ever a long-running background computation or a call to a
3rd party library which will block the event loop, we may use an additional
std::thread
to "offload" such an operation. Thus we do have a threading model,
but it is heterogeneous.
IRCd presents an interface introducing stackful coroutines, a.k.a. userspace context switching, a.k.a. green threads, a.k.a. fibers. The library avoids callbacks as the way to break up execution when waiting for events. Instead, we harken back to the simple old ways of synchronous programming where control flow and data are easy to follow.
If there are certain cases where we don't want a stack to linger which may jeopardize the c10k'ness of the daemon the asynchronous pattern is still used, thus this is a hybrid system.
Consider coroutines like "macro-ops" and asynchronous callbacks like "micro-ops." The pattern tends to use a coroutine to perform a large and complex operation which may involve many micro-ops behind the scenes. This approach relegates the asynchronous callback pattern to simple tasks contained within specific units which require scale, encapsulating the complexity away from the rest of the project.
Linking to libircd from your executable allows you to customize and extend the functionality of the server and have control over its execution, or, simply use library routines provided by the library without any daemonization. Users of the library should never pay for what they don't use. The library should also minimize conflicts with other libraries sharing the address space.
Keeping with the spirit of simplicity of the original architecture, libircd
continues to be a "singleton" object which uses globals and keeps actual server
state in the library itself. In other words, only one IRC daemon can exist
within a process's address space at a time. Whether or not this was a pitfall
of the original design, it has emerged over the decades as a very profitable
decision for making IRCd an accessible open source internet project.
We utilize the boost::spirit
system of parsing and printing through formal grammars,
rather than writing our own parsers manually. In addition, we build several tools
on top of such formal devices like a type-safe format string library acting as a
drop-in for ::sprintf()
, but accepting objects like std::string
without .c_str()
and prevention of outputting unprintable/unwanted characters that may have been
injected into the system somewhere prior.
libircd
is designed specifically as a shared object library. The purpose of its
shared'ness is to facilitate IRCd's modular design: IRCd ships with many other
shared objects which introduce the "business logic" and features of the daemon. If
libircd
was not a shared object, every single module would have to include large
amounts of duplicate code drawn from the static library. This would be a huge drag
on both compilation and the runtime performance.
|-------------|
---------------------- | | < ---- (module)
| | | |
| User's executable | <---- | libircd | < ---- (module)
| | | |
---------------------- | | < ---- (module)
|-------------|
The user (which we may also refer to as the "embedder" elsewhere in
documentation) only deals directly with libircd
and not the modules.
libircd
is generally loaded with its symbols bound globally in the executable
and on most platforms cannot be unloaded (or even loaded) manually and has not
been tested to do so. As an aside, we do not summarily dismiss the idea of
reload capability and would like to see it made possible.