Skip to content

Latest commit

 

History

History
 
 

u2net-human-seg

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

U^2-Net - human segmentation

Input

input_image
(Image from https://github.com/xuebinqin/U-2-Net/blob/master/test_data/test_human_images/5-mental-skills-of-successful-athletes-image.jpg)

  • Ailia input shape: (1, 3, 320, 320)

Output

output_image

Usage

Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.

For the sample image,

$ python3 u2net-human-seg.py

If you want to specify the input image, put the image path after the --input option.
You can use --savepath option to change the name of the output file to save.

$ python3 u2net-human-seg.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH

By adding the --video option, you can input the video.
If you pass 0 as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.

$ python3 u2net-human-seg.py --video VIDEO_PATH

Add the --composite option if you want to combine the input image with the calculated alpha value.

$ python3 u2net-human-seg.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH --composite

Reference

Framework

PyTorch

Model Format

ONNX opset = 11

Netron

u2net-human-seg.onnx.prototxt