Skip to content

Latest commit

 

History

History
54 lines (34 loc) · 1.35 KB

File metadata and controls

54 lines (34 loc) · 1.35 KB

Noise2Noise

Input

Input

Ailia input shape : (1,3,256,256)
Range : [0.0, 1.0]

Output

Output

usage

Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.

For the sample image,

$ python3 noise2noise.py

If you want to specify the input image, put the image path after the --input option.
You can use --savepath option to change the name of the output file to save.

$ python3 noise2noise.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH

By adding the --video option, you can input the video.
If you pass 0 as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.

$ python3 noise2noise.py --video VIDEO_PATH

If you want to try this model on a normal image, --add_noise will automatically add noise to the image before loading it. The noise-added image will be saved as noise_image.png in the current directory.

Reference

Learning Image Restoration without Clean Data

Framework

Pytorch 1.2.0

Model Format

ONNX opset = 10

Netron

noise2noise_gaussian.onnx.prototxt