forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
movenet.py
200 lines (158 loc) · 6.56 KB
/
movenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import sys
import time
import ailia
import cv2
import numpy as np
import skimage
import movenet_utils
sys.path.append('../../util')
# logger
from logging import getLogger # noqa: E402
import webcamera_utils # noqa: E402
from image_utils import imread # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from utils import get_base_parser, get_savepath, update_parser # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
IMAGE_PATH = 'input.jpg'
SAVE_IMAGE_PATH = 'output.png'
MODEL_VARIANTS = ['thunder','lightning'] # thunder, lightning
MODEL_VARIANT = 'thunder'
parser = get_base_parser(
'MOVENET,.', IMAGE_PATH, SAVE_IMAGE_PATH,
)
parser.add_argument(
'-i', '--input', type=str,
default=IMAGE_PATH,
help='The input image for movenet.'
)
parser.add_argument(
'-v', '--video', type=str,
help='The input video for movenet.'
)
parser.add_argument(
'-o', '--onnx', action='store_true',
help="Option to use onnxrutime to run or not."
)
parser.add_argument(
'-m', '--model_variant', type=str,
default=MODEL_VARIANT, choices=MODEL_VARIANTS,
help="The model variant for movenet, 'thunder','lightning'."
)
args = update_parser(parser)
MODEL_NAME = 'movenet_{}'.format(args.model_variant)
WEIGHT_PATH = f'{MODEL_NAME}.onnx'
MODEL_PATH = f'{MODEL_NAME}.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/movenet/'
RESOLUTION = {'thunder': 256, 'lightning': 192}[args.model_variant]
IMAGE_SIZE = RESOLUTION
# # ======================
# # Main functions
# # ======================
def recognize_from_image():
# net initialize
if args.onnx:
import onnxruntime
model = onnxruntime.InferenceSession(WEIGHT_PATH)
else:
logger.info(f'env_id: {args.env_id}')
model = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
for image_path in args.input:
image = imread(image_path)
input_image, padding_ratio = movenet_utils.crop_and_padding(image,IMAGE_SIZE)
input_image = np.expand_dims(input_image, axis=0)
if args.benchmark:
logger.info('BENCHMARK mode')
total_time = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
keypoint_with_scores = model.run( input_image.astype(np.float32) )[0]
end = int(round(time.time() * 1000))
if i != 0:
total_time = total_time + (end - start)
logger.info(f'\tailia processing time {end - start} ms')
logger.info(f'\taverage time {total_time / (args.benchmark_count-1)} ms')
else:
if args.onnx:
ort_inputs = { model.get_inputs()[0].name : input_image.astype(np.float32)}
keypoint_with_scores = model.run(None,ort_inputs)[0]
else:
keypoint_with_scores = model.run( input_image.astype(np.float32) )[0]
# convert xy ratio for original image
if image.shape[0] > image.shape[1]:
keypoint_with_scores[0, 0, :, 1] = ( keypoint_with_scores[0, 0, :, 1] - padding_ratio ) / (1-2*padding_ratio)
else:
keypoint_with_scores[0, 0, :, 0] = ( keypoint_with_scores[0, 0, :, 0] - padding_ratio ) / (1-2*padding_ratio)
# plot result
result_image = movenet_utils.draw_prediction_on_image( image, keypoint_with_scores)
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
print(result_image.shape)
cv2.imwrite(savepath, result_image)
logger.info('Script finished successfully.')
def recognize_from_video():
# net initialize
if args.onnx:
import onnxruntime
model = onnxruntime.InferenceSession(WEIGHT_PATH)
else:
logger.info(f'env_id: {args.env_id}')
model = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
capture = webcamera_utils.get_capture(args.video)
first_frame_flag = False # to calculate crop region of first frame
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
else:
writer = None
frame_shown = False
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('result', cv2.WND_PROP_VISIBLE) == 0:
break
image_height, image_width, _ = frame.shape
# calculate first frame crop region
if first_frame_flag == False:
crop_region = movenet_utils.init_crop_region(image_height, image_width)
first_frame_flag = True
crop_image = movenet_utils.crop_and_resize(frame,crop_region, IMAGE_SIZE)
input_image = np.expand_dims(crop_image, axis=0)
if args.onnx:
ort_inputs = { model.get_inputs()[0].name : input_image.astype(np.float32)}
keypoints_with_scores = model.run(None,ort_inputs)[0]
else:
keypoints_with_scores = model.run(input_image)[0]
# convert xy ratio for original frame
keypoints_with_scores[0, 0, :, 0] = ( crop_region['y_min'] * image_height + crop_region['height'] * image_height * keypoints_with_scores[0, 0, :, 0]) / image_height
keypoints_with_scores[0, 0, :, 1] = ( crop_region['x_min'] * image_width + crop_region['width'] * image_width * keypoints_with_scores[0, 0, :, 1]) / image_width
# draw keypoints on original frame
result_image = movenet_utils.draw_prediction_on_image(frame,keypoints_with_scores)
# update crop region
crop_region = movenet_utils.determine_crop_region(keypoints_with_scores, image_height, image_width)
cv2.imshow('result', result_image)
frame_shown = True
# save results
if writer is not None:
writer.write(frame)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()