(Image from https://github.com/czming/RONELD-Lane-Detection/tree/main/example/00000.jpg)
Input shape: (1, 3, 208, 976) for erfnet, (1, 288, 800, 3) for scnn
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 codes-for-lane-detection.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 codes-for-lane-detection.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 codes-for-lane-detection.py --video VIDEO_PATH
By adding the --arch
option, you can select the model architecture from erfnet
and scnn
.
Spatial As Deep: Spatial CNN for Traffic Scene Understanding
ERFNet : Pytorch
SCNN : Tensorflow 1.13.2
ONNX opset = 11