-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_supervision.py
229 lines (185 loc) · 8.71 KB
/
train_supervision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from tools.cfg import py2cfg
import os
import torch
from torch import nn
import cv2
import numpy as np
import argparse
from pathlib import Path
from tools.metric import Evaluator
from pytorch_lightning.loggers import CSVLogger
import random
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def get_args():
parser = argparse.ArgumentParser()
arg = parser.add_argument
arg("-c", "--config_path", type=Path, help="Path to the config.", required=True)
return parser.parse_args()
class Supervision_Train(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.config = config
self.net = config.net
self.loss = config.loss
self.metrics_train = Evaluator(num_class=config.num_classes)
self.metrics_val = Evaluator(num_class=config.num_classes)
def forward(self, x):
# only net is used in the prediction/inference
seg_pre = self.net(x)
return seg_pre
def training_step(self, batch, batch_idx):
img, mask = batch['img'], batch['gt_semantic_seg']
prediction = self.net(img)
loss = self.loss(prediction, mask)
if self.config.use_aux_loss:
pre_mask = nn.Softmax(dim=1)(prediction[0])
else:
pre_mask = nn.Softmax(dim=1)(prediction)
pre_mask = pre_mask.argmax(dim=1)
for i in range(mask.shape[0]):
self.metrics_train.add_batch(mask[i].cpu().numpy(), pre_mask[i].cpu().numpy())
return {"loss": loss}
def on_train_epoch_end(self):
if 'vaihingen' in self.config.log_name:
mIoU = np.nanmean(self.metrics_train.Intersection_over_Union()[:-1])
F1 = np.nanmean(self.metrics_train.F1()[:-1])
elif 'potsdam' in self.config.log_name:
mIoU = np.nanmean(self.metrics_train.Intersection_over_Union()[:-1])
F1 = np.nanmean(self.metrics_train.F1()[:-1])
elif 'whubuilding' in self.config.log_name:
mIoU = np.nanmean(self.metrics_train.Intersection_over_Union()[:-1])
F1 = np.nanmean(self.metrics_train.F1()[:-1])
elif 'massbuilding' in self.config.log_name:
mIoU = np.nanmean(self.metrics_train.Intersection_over_Union()[:-1])
F1 = np.nanmean(self.metrics_train.F1()[:-1])
elif 'cropland' in self.config.log_name:
mIoU = np.nanmean(self.metrics_train.Intersection_over_Union()[:-1])
F1 = np.nanmean(self.metrics_train.F1()[:-1])
else:
mIoU = np.nanmean(self.metrics_train.Intersection_over_Union())
F1 = np.nanmean(self.metrics_train.F1())
OA = np.nanmean(self.metrics_train.OA())
iou_per_class = self.metrics_train.Intersection_over_Union()
eval_value = {'mIoU': mIoU,
'F1': F1,
'OA': OA}
print('train:', eval_value)
iou_value = {}
for class_name, iou in zip(self.config.classes, iou_per_class):
iou_value[class_name] = iou
print(iou_value)
self.metrics_train.reset()
log_dict = {'train_mIoU': mIoU, 'train_F1': F1, 'train_OA': OA}
self.log_dict(log_dict, prog_bar=True)
def validation_step(self, batch, batch_idx):
img, mask = batch['img'], batch['gt_semantic_seg']
prediction = self.forward(img)
pre_mask = nn.Softmax(dim=1)(prediction)
pre_mask = pre_mask.argmax(dim=1)
for i in range(mask.shape[0]):
self.metrics_val.add_batch(mask[i].cpu().numpy(), pre_mask[i].cpu().numpy())
loss_val = self.loss(prediction, mask)
return {"loss_val": loss_val}
def on_validation_epoch_end(self):
if 'vaihingen' in self.config.log_name:
mIoU = np.nanmean(self.metrics_val.Intersection_over_Union()[:-1])
F1 = np.nanmean(self.metrics_val.F1()[:-1])
macc = np.nanmean(self.metrics_val.Pixel_Accuracy_Class()[:-1])
mrecall = np.nanmean(self.metrics_val.Recall()[:-1])
elif 'potsdam' in self.config.log_name:
mIoU = np.nanmean(self.metrics_val.Intersection_over_Union()[:-1])
F1 = np.nanmean(self.metrics_val.F1()[:-1])
elif 'whubuilding' in self.config.log_name:
mIoU = np.nanmean(self.metrics_val.Intersection_over_Union()[:-1])
F1 = np.nanmean(self.metrics_val.F1()[:-1])
elif 'massbuilding' in self.config.log_name:
mIoU = np.nanmean(self.metrics_val.Intersection_over_Union()[:-1])
F1 = np.nanmean(self.metrics_val.F1()[:-1])
elif 'cropland' in self.config.log_name:
mIoU = np.nanmean(self.metrics_val.Intersection_over_Union()[:-1])
F1 = np.nanmean(self.metrics_val.F1()[:-1])
else:
mIoU = np.nanmean(self.metrics_val.Intersection_over_Union())
F1 = np.nanmean(self.metrics_val.F1())
macc = np.nanmean(self.metrics_val.Pixel_Accuracy_Class())
mrecall = np.nanmean(self.metrics_val.Recall())
#OA = np.nanmean(self.metrics_val.OA())
iou_per_class = self.metrics_val.Intersection_over_Union()
acc_per_class = self.metrics_val.Pixel_Accuracy_Class()
f1_per_class = self.metrics_val.F1()
recall_per_class = self.metrics_val.Recall()
eval_value = {'mIoU': mIoU,
'F1': F1,
#'OA': OA
}
print('val:', eval_value)
#log_dict = {'val_mIoU': mIoU, 'val_F1': F1, 'val_acc': macc}
# mIoU
log_dict ={}
acc_value = {}
log_dict['val_acc'] = macc
for class_name, acc in zip(self.config.classes, acc_per_class):
acc_value['acc_'+class_name] = acc
log_dict['acc_'+class_name] = acc
print(acc_value)
iou_value = {}
log_dict['val_miou'] = mIoU
for class_name, iou in zip(self.config.classes, iou_per_class):
iou_value['iou_'+class_name] = iou
log_dict['iou_'+class_name] = iou
print(iou_value)
f1_value = {}
log_dict['val_F1'] = F1
for class_name, f1 in zip(self.config.classes, f1_per_class):
f1_value['f1_'+class_name] = f1
log_dict['f1_'+class_name] = f1
print(f1_value)
recall_value = {}
log_dict['val_recall'] = mrecall
for class_name, recall in zip(self.config.classes, recall_per_class):
recall_value['recall_'+class_name] = recall
log_dict['recall_'+class_name] = recall
print(recall_value)
self.metrics_val.reset()
self.log_dict(log_dict, prog_bar=True)
def configure_optimizers(self):
optimizer = self.config.optimizer
lr_scheduler = self.config.lr_scheduler
return [optimizer], [lr_scheduler]
def train_dataloader(self):
return self.config.train_loader
def val_dataloader(self):
return self.config.val_loader
# training
def main():
args = get_args()#get_args() 获取终端输入的参数,即config文件
config = py2cfg(args.config_path)#将config.py文件 转换成一个字典
seed_everything(42)
#通过监视数量定期保存模型。记录的每个指标。
checkpoint_callback = ModelCheckpoint(save_top_k=config.save_top_k, monitor=config.monitor,
save_last=config.save_last, mode=config.monitor_mode,
dirpath=config.weights_path,
filename=config.weights_name)
#save_top_k :save_top_k个最优模型允许被保存,
#要监控的数量。默认情况下,它是“无”,仅保存最后一个纪元的检查点
#当“True”时,每当保存检查点文件时,都会将检查点的精确副本保存到文件“last.ckpt”中。这允许以确定性方式访问最新的检查点。默认值:“无”
logger = CSVLogger('lightning_logs', name=config.log_name)
model = Supervision_Train(config)
if config.pretrained_ckpt_path:
model = Supervision_Train.load_from_checkpoint(config.pretrained_ckpt_path, config=config)
trainer = pl.Trainer(devices=config.gpus, max_epochs=config.max_epoch, accelerator='auto',
check_val_every_n_epoch=config.check_val_every_n_epoch,
callbacks=[checkpoint_callback], strategy='auto',
logger=logger)
trainer.fit(model=model, ckpt_path=config.resume_ckpt_path)
if __name__ == "__main__":
main()