-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdfs_play.py
204 lines (181 loc) · 7.49 KB
/
dfs_play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# DFS search for least round solution
# AI project 1.1
# Author: HelinXu
# Date: Nov 5, 2021
import random
import numpy as np
import time
import argparse
import copy
class CardGame(object):
def __init__(self, cards=None, N=0):
'''
Input:
cards: (15) Numpy array, cards[i] corresponds to the number of certain card-face.
'''
if N != 0:
self.my_cards = self.initialize(N)
else:
self.my_cards = cards
self.max_min_depth = 54 # 目前搜索到最短的出牌方式。不会比着出牌更多了。
self.current_best_solution = [] # 目前搜索的最好出牌方式。
self.current_path = [[54],]
def initialize(self, N):
'''random initialize my cards, count = N
Input:
- N: number of cards
Output:
- cards: np array (15) [4 4 4 4 4 4 4 4 4 4 4 4 4 1 1]
'''
assert N <= 54 and N > 0, "N must be positive int smaller than 54"
cards = np.array([0] * 15)
for x in random.sample(range(0, 54), N):
if x == 53:
cards[14] = 1
else:
cards[x//4] += 1
return cards
def done(self):
return sum(self.my_cards) == 0
def play_cards(self, cards_to_play):
my_cards_after = self.my_cards - cards_to_play
assert min(my_cards_after) >= 0, "invalid play!"
self.current_path.append(cards_to_play)
self.my_cards = my_cards_after
def restore_cards(self, cards_to_restore):
self.current_path.pop()
self.my_cards = self.my_cards + cards_to_restore
def in_limit(self, cards_to_play):
'''用来判断是否可以出这个手牌。'''
return (min(self.my_cards - cards_to_play) >= 0)
def get_possible_plays(self):
possible_plays = []
S = sum(self.my_cards)
if S >= 6:
# 三顺子
for i in range(2, 12): # 连续的3个的组数
for j in range(0, 13-i):
play = np.array([0]*j + [3]*i + [0]*(15-i-j))
if self.in_limit(play): possible_plays.append(play)
# 间隔三顺子
for i in range(2, 6):
for j in range(0, 14-2*i):
play = np.array([0]*j + [3,0,]*i + [0]*(15-2*i-j))
if self.in_limit(play): possible_plays.append(play)
# 双顺子
for i in range(3, 12): # 连续的对子的组数
for j in range(0, 13-i):
play = np.array([0]*j + [2]*i + [0]*(15-i-j))
if self.in_limit(play): possible_plays.append(play)
# 间隔双顺子
for i in range(3, 6):
for j in range(0, 14-2*i):
play = np.array([0]*j + [2,0,]*i + [0]*(15-2*i-j))
if self.in_limit(play): possible_plays.append(play)
if S >= 5:
# 单顺子
for i in range(5, 13): # TODO
for j in range(0, 13-i):
play = np.array([0]*j + [1]*i + [0]*(15-i-j))
if self.in_limit(play): possible_plays.append(play)
# 间隔单顺子
for play in [np.array([1,0,1,0,1,0,1,0,1,0,0,0,0,0,0]),
np.array([0,1,0,1,0,1,0,1,0,1,0,0,0,0,0]),
np.array([0,0,1,0,1,0,1,0,1,0,1,0,0,0,0]),
np.array([0,0,0,1,0,1,0,1,0,1,0,1,0,0,0]),
np.array([1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]),
np.array([0,1,0,1,0,1,0,1,0,1,0,1,0,0,0])]:
if self.in_limit(play): possible_plays.append(play)
if S >= 8:
# 四带二对
for i in range(0,13): # 4
for j in range(0,12): # 2-1
if j == i: continue
for k in range(j+1,13): # 2-2
if k == i: continue
play = np.array([0]*15)
play[i] = 4
play[j] = 2
play[k] = 2
if self.in_limit(play): possible_plays.append(play)
if S >= 6:
# 四带二
for i in range(0,13):
for j in range(0,13):
if j == i: continue
play = np.array([0]*15)
play[i] = 4
play[j] = 2
if self.in_limit(play): possible_plays.append(play)
if S >= 5:
# 三带二
for i in range(0,13):
for j in range(0,13):
if j == i: continue
play = np.array([0]*15)
play[i] = 3
play[j] = 2
if self.in_limit(play): possible_plays.append(play)
if S >= 4:
# 三带一
for i in range(0,13):
for j in range(0,13):
if j == i: continue
play = np.array([0]*15)
play[i] = 3
play[j] = 1
if self.in_limit(play): possible_plays.append(play)
# 炸弹
for i in range(0,13):
play = np.array([0]*15)
play[i] = 4
if self.in_limit(play): possible_plays.append(play)
if S >= 3:
# 三张牌
for i in range(0,13):
play = np.array([0]*15)
play[i] = 3
if self.in_limit(play): possible_plays.append(play)
if S >= 2:
# 2
for i in range(0,13):
play = np.array([0]*15)
play[i] = 2
if self.in_limit(play): possible_plays.append(play)
# 火箭
if self.in_limit(np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,1,1])): possible_plays.append(np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,1,1]))
# 1
for i in range(0,15):
play = np.array([0]*15)
play[i] = 1
if self.in_limit(play): possible_plays.append(play)
possible_plays.sort(key=lambda x: -sum(x)*16+np.min(np.nonzero(x)))
return possible_plays
def dfs(self, depth):
if self.done():
if depth < self.max_min_depth:
self.max_min_depth = depth
self.current_best_solution.clear()
self.current_best_solution = copy.deepcopy(self.current_path)
return
possible_plays = self.get_possible_plays()
for this_play in possible_plays:
if sum(self.my_cards) > (self.max_min_depth - depth - 1) * sum(this_play): break # 如果按照现在这种出法,无法提前一次,则不必继续搜索
if sum(this_play)*16-np.min(np.nonzero(this_play)) > sum(self.current_path[-1])*16-np.min(np.nonzero(self.current_path[-1])): continue
self.play_cards(this_play)
self.dfs(depth + 1)
self.restore_cards(this_play)
def solve_game(self):
print(f'initialization: {list(self.my_cards)}')
self.dfs(0)
print(f'done! depth = {self.max_min_depth}, path = {self.current_best_solution}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-n', help='number of cards', type=int, default=20)
parser.add_argument('-c', help='list of cards', type=list, default=None)
opt = parser.parse_args()
tic = time.time()
game = CardGame(N=opt.n, cards=opt.c)
game.solve_game()
toc = time.time()
print(f'time: {toc - tic}')