-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
396 lines (340 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import os
import sys
import errno
import glob
import random
import numpy as np
from argparse import ArgumentParser
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torchtext import data
from torchtext import datasets
from classifier import NLIModel
from corpora import MultiNLI, SciTail, StanfordNLI, AllNLI, BreakingNLI
import pdb
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = ArgumentParser(description='Helsinki NLI')
parser.add_argument("--corpus",
type=str,
choices=['snli', 'breaking_nli', 'multinli_matched', 'multinli_mismatched', 'scitail', 'all_nli'],
default='snli')
parser.add_argument('--epochs',
type=int,
default=20)
parser.add_argument('--batch_size',
type=int,
default=64)
parser.add_argument("--encoder_type",
type=str,
choices=['BiLSTMMaxPoolEncoder',
'LSTMEncoder',
'HBMP'],
default='HBMP')
parser.add_argument("--activation",
type=str,
choices=['tanh', 'relu', 'leakyrelu'],
default='relu')
parser.add_argument("--optimizer",
type=str,
choices=['rprop',
'adadelta',
'adagrad',
'rmsprop',
'adamax',
'asgd',
'adam',
'sgd'],
default='adam')
parser.add_argument('--embed_dim',
type=int,
default=300)
parser.add_argument('--fc_dim',
type=int,
default=600)
parser.add_argument('--hidden_dim',
type=int,
default=600)
parser.add_argument('--layers',
type=int,
default=1)
parser.add_argument('--dropout',
type=float,
default=0.1)
parser.add_argument('--learning_rate',
type=float,
default=0.0005)
parser.add_argument('--lr_patience',
type=int,
default=1)
parser.add_argument('--lr_decay',
type=float,
default=0.99)
parser.add_argument('--lr_reduction_factor',
type=float,
default=0.2)
parser.add_argument('--weight_decay',
type=float,
default=0)
parser.add_argument('--gpu',
type=int,
default=0)
parser.add_argument('--preserve_case',
action='store_false',
dest='lower')
parser.add_argument('--word_embedding',
type=str,
default='glove.840B.300d')
parser.add_argument('--resume_snapshot',
type=str,
default='')
parser.add_argument('--early_stopping_patience',
type=int,
default=3)
parser.add_argument('--save_path',
type=str,
default='results')
parser.add_argument('--seed',
type=int,
default=1234)
def make_dirs(name):
try:
os.makedirs(name)
except OSError as ex:
if ex.errno == errno.EEXIST and os.path.isdir(name):
# ignore existing directory
pass
else:
# a different error happened
raise
def main():
config = parser.parse_args()
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed(config.seed)
random.seed(config.seed)
torch.cuda.device(config.gpu)
inputs = data.Field(lower=config.lower, tokenize='spacy')
labels = data.Field(sequential=False, unk_token=None)
category_field = data.Field(sequential=False)
id_field = data.Field(sequential=False, unk_token=None)
if config.corpus == 'multinli_matched':
train, dev, test = MultiNLI.splits_matched(inputs, labels, id_field)
id_field.build_vocab(train, dev, test)
elif config.corpus == 'multinli_mismatched':
train, dev, test = MultiNLI.splits_mismatched(inputs, labels, id_field)
id_field.build_vocab(train, dev, test)
elif config.corpus == 'scitail':
train, dev, test = SciTail.splits(inputs, labels)
elif config.corpus == 'all_nli':
train, dev, test = AllNLI.splits(inputs, labels, id_field)
id_field.build_vocab(train, dev, test)
elif config.corpus == 'breaking_nli':
train, dev, test = BreakingNLI.splits(inputs, labels, category_field)
category_field.build_vocab(test)
else:
train, dev, test = StanfordNLI.splits(inputs, labels)
inputs.build_vocab(train, dev, test)
labels.build_vocab(train)
if config.word_embedding:
pretrained_embedding = os.path.join(os.getcwd(), '.vector_cache/'+config.corpus+'_'+config.word_embedding+'.pt')
if os.path.isfile(pretrained_embedding):
inputs.vocab.vectors = torch.load(pretrained_embedding,
map_location=lambda storage, location: storage.cuda(config.gpu))
else:
print('Downloading pretrained {} word embeddings\n'.format(config.word_embedding))
inputs.vocab.load_vectors(config.word_embedding)
make_dirs(os.path.dirname(pretrained_embedding))
torch.save(inputs.vocab.vectors, pretrained_embedding)
train_iter, dev_iter, test_iter = data.BucketIterator.splits((train, dev, test),
batch_size=config.batch_size,
device=device)
config.embed_size = len(inputs.vocab)
config.out_dim = len(labels.vocab)
config.cells = config.layers
if config.encoder_type != 'LSTMEncoder':
config.cells *= 2
if config.resume_snapshot:
model = torch.load(config.resume_snapshot,
map_location=lambda storage, location: storage.cuda(config.gpu))
else:
model = NLIModel(config)
if config.word_embedding:
model.sentence_embedding.word_embedding.weight.data = inputs.vocab.vectors
model.cuda(device=config.gpu)
# Loss
criterion = nn.CrossEntropyLoss()
# Optimizer
if config.optimizer == 'adadelta':
optim_algorithm = optim.Adadelta
elif config.optimizer == 'adagrad':
optim_algorithm = optim.Adagrad
elif config.optimizer == 'adam':
optim_algorithm = optim.Adam
elif config.optimizer == 'adamax':
optim_algorithm = optim.Adamax
elif config.optimizer == 'asgd':
optim_algorithm = optim.ASGD
elif config.optimizer == 'rmsprop':
optim_algorithm = optim.RMSprop
elif config.optimizer == 'rprop':
optim_algorithm = optim.Rprop
elif config.optimizer == 'sgd':
optim_algorithm = optim.SGD
else:
raise Exception('Unknown optimization optimizer: "%s"' % config.optimizer)
optimizer = optim_algorithm(model.parameters(),
lr=config.learning_rate,
weight_decay=config.weight_decay)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer,
'min',
factor=config.lr_reduction_factor,
patience=config.lr_patience,
verbose=False,
min_lr=1e-5)
iterations = 0
best_dev_acc = -1
dev_accuracies = []
best_dev_loss = 1
early_stopping = 0
stop_training = False
train_iter.repeat = False
make_dirs(config.save_path)
# Print parameters and config
print('\nConfig: {}\n'.format(sys.argv[1:]))
print(config)
# Print the model
print('Model:\n')
print(model)
print('\n')
params = sum([p.numel() for p in model.parameters()])
print('Parameters: {}'.format(params))
print('\nTraining started...\n')
# Train for the number of epochs specified
for epoch in range(config.epochs):
if stop_training == True:
break
train_iter.init_epoch()
n_correct = 0
n_total = 0
all_losses = []
train_accuracies = []
all_losses = []
optimizer.param_groups[0]['lr'] = optimizer.param_groups[0]['lr'] * config.lr_decay if epoch>0\
and config.optimizer == 'sgd' else optimizer.param_groups[0]['lr']
print('\nEpoch: {:>02.0f}/{:<02.0f}'.format(epoch+1, config.epochs), end=' ')
print('(Learning rate: {})'.format(optimizer.param_groups[0]['lr']))
for batch_idx, batch in enumerate(train_iter):
model.train()
optimizer.zero_grad()
iterations += 1
answer = model(batch)
# sys.exit()
# Calculate accuracy
n_correct += (torch.max(answer, 1)[1].view(batch.label.size()).data == batch.label.data).sum()
n_total += batch.batch_size
train_acc = 100. * n_correct/n_total
train_accuracies.append(train_acc.item())
# Calculate loss
loss = criterion(answer, batch.label)
all_losses.append(loss.item())
# Backpropagate and update the learning rate
loss.backward()
optimizer.step()
print('Progress: {:3.0f}% - Batch: {:>4.0f}/{:<4.0f} - Loss: {:6.2f}% - Accuracy: {:6.2f}%'.format(
100. * (1+batch_idx) / len(train_iter),
1+batch_idx, len(train_iter),
round(100. * np.mean(all_losses), 2),
round(np.mean(train_accuracies), 2)), end='\r')
# Evaluate performance
# if iterations % config.dev_every == 0:
if 1+batch_idx == len(train_iter):
# Switch model to evaluation mode
model.eval()
dev_iter.init_epoch()
# Calculate Accuracy
n_dev_correct = 0
dev_loss = 0
dev_losses = []
for dev_batch_idx, dev_batch in enumerate(dev_iter):
answer = model(dev_batch)
n_dev_correct += (torch.max(answer, 1)[1].view(dev_batch.label.size()).data == \
dev_batch.label.data).sum()
dev_loss = criterion(answer, dev_batch.label)
dev_losses.append(dev_loss.item())
dev_acc = 100. * n_dev_correct / len(dev)
dev_acc=dev_acc.item()
dev_accuracies.append(dev_acc)
print('\nDev loss: {}% - Dev accuracy: {}%'.format(round(100.*np.mean(dev_losses), 2), round(dev_acc, 2)))
# Update validation best accuracy if it is better than
# already stored
if dev_acc > best_dev_acc:
best_dev_acc = dev_acc
best_dev_epoch = 1+epoch
snapshot_prefix = os.path.join(config.save_path, 'best')
dev_snapshot_path = snapshot_prefix + \
'_{}_{}D_devacc_{}_epoch_{}.pt'.format(config.encoder_type, config.hidden_dim, round(dev_acc, 2), 1+epoch)
# save model, delete previous snapshot
torch.save(model, dev_snapshot_path)
for f in glob.glob(snapshot_prefix + '*'):
if f != dev_snapshot_path:
os.remove(f)
# Check for early stopping
if np.mean(dev_losses) < best_dev_loss:
best_dev_loss = np.mean(dev_losses)
else:
early_stopping += 1
if early_stopping > config.early_stopping_patience and config.optimizer != 'sgd':
stop_training = True
print('\nEarly stopping')
if config.optimizer == 'sgd' and optimizer.param_groups[0]['lr'] < 1e-5:
stop_training = True
print('\nEarly stopping')
# Update learning rate
scheduler.step(round(np.mean(dev_losses), 2))
dev_losses = []
# If training has completed, calculate the test scores
if stop_training == True or (1+epoch == config.epochs and 1+batch_idx == len(train_iter)):
print('\nTraining completed after {} epocs.\n'.format(1+epoch))
#Save the final model
final_snapshot_prefix = os.path.join(config.save_path, 'final')
final_snapshot_path = final_snapshot_prefix + \
'_{}_{}D.pt'.format(config.encoder_type, config.hidden_dim)
torch.save(model, final_snapshot_path)
for f in glob.glob(final_snapshot_prefix + '*'):
if f != final_snapshot_path:
os.remove(f)
# Evaluate the best dev model
test_model = torch.load(dev_snapshot_path)
# Switch model to evaluation mode
test_model.eval()
test_iter.init_epoch()
# Calculate Accuracy
n_test_correct = 0
test_loss = 0
test_losses = []
for test_batch_idx, test_batch in enumerate(test_iter):
answer = test_model(test_batch)
n_test_correct += (torch.max(answer, 1)[1].view(test_batch.label.size()).data == \
test_batch.label.data).sum()
test_loss = criterion(answer, test_batch.label)
test_losses.append(test_loss.item())
test_acc = 100. * n_test_correct / len(test)
test_acc=test_acc.item()
print('SUMMARY:')
print('Encoder: {}'.format(config.encoder_type))
if config.encoder_type == 'BiLSTMMaxPoolEncoder' or config.encoder_type == \
'HBMP' or config.encoder_type == 'HAttentionBiLSTMEncoder':
print('Sentence embedding size: {}D'.format(2*config.hidden_dim))
else:
print('Sentence embedding size: {}D'.format(config.hidden_dim))
print('\nMean dev accuracy: {:6.2f}%\n'.format(round(np.mean(dev_accuracies)), 2))
print('BEST MODEL:')
print('Early stopping patience: {}'.format(config.early_stopping_patience))
print('Epoch: {}'.format(best_dev_epoch))
print('Dev accuracy: {:<6.2f}%'.format(round(best_dev_acc, 2)))
print('Test loss: {:<.2f}%'.format(round(100. * np.mean(test_losses), 2)))
print('Test accuracy: {:<5.2f}%\n'.format(round(test_acc, 2)))
if __name__ == '__main__':
main()