forked from Ultimaker/CuraEngine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
slicer.cpp
1119 lines (985 loc) · 41.1 KB
/
slicer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//Copyright (c) 2020 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include <stdio.h>
#include <algorithm> // remove_if
#include "settings/AdaptiveLayerHeights.h"
#include "Application.h"
#include "Slice.h"
#include "slicer.h"
#include "settings/EnumSettings.h"
#include "settings/types/LayerIndex.h"
#include "utils/gettime.h"
#include "utils/logoutput.h"
#include "utils/SparsePointGridInclusive.h"
namespace cura
{
constexpr int largest_neglected_gap_first_phase = MM2INT(0.01); //!< distance between two line segments regarded as connected
constexpr int largest_neglected_gap_second_phase = MM2INT(0.02); //!< distance between two line segments regarded as connected
constexpr int max_stitch1 = MM2INT(10.0); //!< maximal distance stitched between open polylines to form polygons
void SlicerLayer::makeBasicPolygonLoops(Polygons& open_polylines)
{
for(size_t start_segment_idx = 0; start_segment_idx < segments.size(); start_segment_idx++)
{
if (!segments[start_segment_idx].addedToPolygon)
{
makeBasicPolygonLoop(open_polylines, start_segment_idx);
}
}
//Clear the segmentList to save memory, it is no longer needed after this point.
segments.clear();
}
void SlicerLayer::makeBasicPolygonLoop(Polygons& open_polylines, const size_t start_segment_idx)
{
Polygon poly;
poly.add(segments[start_segment_idx].start);
for (int segment_idx = start_segment_idx; segment_idx != -1; )
{
SlicerSegment& segment = segments[segment_idx];
poly.add(segment.end);
segment.addedToPolygon = true;
segment_idx = getNextSegmentIdx(segment, start_segment_idx);
if (segment_idx == static_cast<int>(start_segment_idx))
{ // polyon is closed
polygons.add(poly);
return;
}
}
// polygon couldn't be closed
open_polylines.add(poly);
}
int SlicerLayer::tryFaceNextSegmentIdx(const SlicerSegment& segment, const int face_idx, const size_t start_segment_idx) const
{
decltype(face_idx_to_segment_idx.begin()) it;
auto it_end = face_idx_to_segment_idx.end();
it = face_idx_to_segment_idx.find(face_idx);
if (it != it_end)
{
const int segment_idx = (*it).second;
Point p1 = segments[segment_idx].start;
Point diff = segment.end - p1;
if (shorterThen(diff, largest_neglected_gap_first_phase))
{
if (segment_idx == static_cast<int>(start_segment_idx))
{
return start_segment_idx;
}
if (segments[segment_idx].addedToPolygon)
{
return -1;
}
return segment_idx;
}
}
return -1;
}
int SlicerLayer::getNextSegmentIdx(const SlicerSegment& segment, const size_t start_segment_idx) const
{
int next_segment_idx = -1;
const bool segment_ended_at_edge = segment.endVertex == nullptr;
if (segment_ended_at_edge)
{
const int face_to_try = segment.endOtherFaceIdx;
if (face_to_try == -1)
{
return -1;
}
return tryFaceNextSegmentIdx(segment, face_to_try, start_segment_idx);
}
else
{
// segment ended at vertex
const std::vector<uint32_t> &faces_to_try = segment.endVertex->connected_faces;
for (int face_to_try : faces_to_try)
{
const int result_segment_idx =
tryFaceNextSegmentIdx(segment, face_to_try, start_segment_idx);
if (result_segment_idx == static_cast<int>(start_segment_idx))
{
return start_segment_idx;
}
else if (result_segment_idx != -1)
{
// not immediately returned since we might still encounter the start_segment_idx
next_segment_idx = result_segment_idx;
}
}
}
return next_segment_idx;
}
void SlicerLayer::connectOpenPolylines(Polygons& open_polylines)
{
constexpr bool allow_reverse = false;
// Search a bit fewer cells but at cost of covering more area.
// Since acceptance area is small to start with, the extra is unlikely to hurt much.
constexpr coord_t cell_size = largest_neglected_gap_first_phase * 2;
connectOpenPolylinesImpl(open_polylines, largest_neglected_gap_second_phase, cell_size, allow_reverse);
}
void SlicerLayer::stitch(Polygons& open_polylines)
{
bool allow_reverse = true;
connectOpenPolylinesImpl(open_polylines, max_stitch1, max_stitch1, allow_reverse);
}
const SlicerLayer::Terminus SlicerLayer::Terminus::INVALID_TERMINUS{~static_cast<Index>(0U)};
bool SlicerLayer::PossibleStitch::operator<(const PossibleStitch& other) const
{
// better if lower distance
if (dist2 > other.dist2)
{
return true;
}
else if (dist2 < other.dist2)
{
return false;
}
// better if in order instead of reversed
if (!in_order() && other.in_order())
{
return true;
}
// better if lower Terminus::Index for terminus_0
// This just defines a more total order and isn't strictly necessary.
if (terminus_0.asIndex() > other.terminus_0.asIndex())
{
return true;
}
else if (terminus_0.asIndex() < other.terminus_0.asIndex())
{
return false;
}
// better if lower Terminus::Index for terminus_1
// This just defines a more total order and isn't strictly necessary.
if (terminus_1.asIndex() > other.terminus_1.asIndex())
{
return true;
}
else if (terminus_1.asIndex() < other.terminus_1.asIndex())
{
return false;
}
// The stitches have equal goodness
return false;
}
std::priority_queue<SlicerLayer::PossibleStitch>
SlicerLayer::findPossibleStitches(
const Polygons& open_polylines,
coord_t max_dist, coord_t cell_size,
bool allow_reverse) const
{
std::priority_queue<PossibleStitch> stitch_queue;
// maximum distance squared
int64_t max_dist2 = max_dist * max_dist;
// Represents a terminal point of a polyline in open_polylines.
struct StitchGridVal
{
unsigned int polyline_idx;
// Depending on the SparsePointGridInclusive, either the start point or the
// end point of the polyline
Point polyline_term_pt;
};
struct StitchGridValLocator
{
Point operator()(const StitchGridVal& val) const
{
return val.polyline_term_pt;
}
};
// Used to find nearby end points within a fixed maximum radius
SparsePointGrid<StitchGridVal,StitchGridValLocator> grid_ends(cell_size);
// Used to find nearby start points within a fixed maximum radius
SparsePointGrid<StitchGridVal,StitchGridValLocator> grid_starts(cell_size);
// populate grids
// Inserts the ends of all polylines into the grid (does not
// insert the starts of the polylines).
for(unsigned int polyline_0_idx = 0; polyline_0_idx < open_polylines.size(); polyline_0_idx++)
{
ConstPolygonRef polyline_0 = open_polylines[polyline_0_idx];
if (polyline_0.size() < 1) continue;
StitchGridVal grid_val;
grid_val.polyline_idx = polyline_0_idx;
grid_val.polyline_term_pt = polyline_0.back();
grid_ends.insert(grid_val);
}
// Inserts the start of all polylines into the grid.
if (allow_reverse)
{
for(unsigned int polyline_0_idx = 0; polyline_0_idx < open_polylines.size(); polyline_0_idx++)
{
ConstPolygonRef polyline_0 = open_polylines[polyline_0_idx];
if (polyline_0.size() < 1) continue;
StitchGridVal grid_val;
grid_val.polyline_idx = polyline_0_idx;
grid_val.polyline_term_pt = polyline_0[0];
grid_starts.insert(grid_val);
}
}
// search for nearby end points
for(unsigned int polyline_1_idx = 0; polyline_1_idx < open_polylines.size(); polyline_1_idx++)
{
ConstPolygonRef polyline_1 = open_polylines[polyline_1_idx];
if (polyline_1.size() < 1) continue;
std::vector<StitchGridVal> nearby_ends;
// Check for stitches that append polyline_1 onto polyline_0
// in natural order. These are stitches that use the end of
// polyline_0 and the start of polyline_1.
nearby_ends = grid_ends.getNearby(polyline_1[0], max_dist);
for (const auto& nearby_end : nearby_ends)
{
Point diff = nearby_end.polyline_term_pt - polyline_1[0];
int64_t dist2 = vSize2(diff);
if (dist2 < max_dist2)
{
PossibleStitch poss_stitch;
poss_stitch.dist2 = dist2;
poss_stitch.terminus_0 = Terminus{nearby_end.polyline_idx, true};
poss_stitch.terminus_1 = Terminus{polyline_1_idx, false};
stitch_queue.push(poss_stitch);
}
}
if (allow_reverse)
{
// Check for stitches that append polyline_1 onto polyline_0
// by reversing order of polyline_1. These are stitches that
// use the end of polyline_0 and the end of polyline_1.
nearby_ends = grid_ends.getNearby(polyline_1.back(), max_dist);
for (const auto& nearby_end : nearby_ends)
{
// Disallow stitching with self with same end point
if (nearby_end.polyline_idx == polyline_1_idx)
{
continue;
}
Point diff = nearby_end.polyline_term_pt - polyline_1.back();
int64_t dist2 = vSize2(diff);
if (dist2 < max_dist2)
{
PossibleStitch poss_stitch;
poss_stitch.dist2 = dist2;
poss_stitch.terminus_0 = Terminus{nearby_end.polyline_idx, true};
poss_stitch.terminus_1 = Terminus{polyline_1_idx, true};
stitch_queue.push(poss_stitch);
}
}
// Check for stitches that append polyline_1 onto polyline_0
// by reversing order of polyline_0. These are stitches that
// use the start of polyline_0 and the start of polyline_1.
std::vector<StitchGridVal> nearby_starts =
grid_starts.getNearby(polyline_1[0], max_dist);
for (const auto& nearby_start : nearby_starts)
{
// Disallow stitching with self with same end point
if (nearby_start.polyline_idx == polyline_1_idx)
{
continue;
}
Point diff = nearby_start.polyline_term_pt - polyline_1[0];
int64_t dist2 = vSize2(diff);
if (dist2 < max_dist2)
{
PossibleStitch poss_stitch;
poss_stitch.dist2 = dist2;
poss_stitch.terminus_0 = Terminus{nearby_start.polyline_idx, false};
poss_stitch.terminus_1 = Terminus{polyline_1_idx, false};
stitch_queue.push(poss_stitch);
}
}
}
}
return stitch_queue;
}
void SlicerLayer::planPolylineStitch(
const Polygons& open_polylines,
Terminus& terminus_0, Terminus& terminus_1, bool reverse[2]) const
{
size_t polyline_0_idx = terminus_0.getPolylineIdx();
size_t polyline_1_idx = terminus_1.getPolylineIdx();
bool back_0 = terminus_0.isEnd();
bool back_1 = terminus_1.isEnd();
reverse[0] = false;
reverse[1] = false;
if (back_0)
{
if (back_1)
{
// back of both polylines
// we can reverse either one and then append onto the other
// reverse the smaller polyline
if (open_polylines[polyline_0_idx].size() <
open_polylines[polyline_1_idx].size())
{
std::swap(terminus_0,terminus_1);
}
reverse[1] = true;
} else {
// back of 0, front of 1
// already in order, nothing to do
}
}
else
{
if (back_1)
{
// front of 0, back of 1
// in order if we swap 0 and 1
std::swap(terminus_0,terminus_1);
}
else
{
// front of both polylines
// we can reverse either one and then prepend to the other
// reverse the smaller polyline
if (open_polylines[polyline_0_idx].size() >
open_polylines[polyline_1_idx].size())
{
std::swap(terminus_0,terminus_1);
}
reverse[0] = true;
}
}
}
void SlicerLayer::joinPolylines(PolygonRef& polyline_0, PolygonRef& polyline_1, const bool reverse[2]) const
{
if (reverse[0])
{
// reverse polyline_0
size_t size_0 = polyline_0.size();
for (size_t idx = 0U; idx != size_0/2; ++idx)
{
std::swap(polyline_0[idx], polyline_0[size_0-1-idx]);
}
}
if (reverse[1])
{
// reverse polyline_1 by adding in reverse order
for(int poly_idx = polyline_1.size() - 1; poly_idx >= 0; poly_idx--)
polyline_0.add(polyline_1[poly_idx]);
}
else
{
// append polyline_1 onto polyline_0
for(Point& p : polyline_1)
polyline_0.add(p);
}
polyline_1.clear();
}
SlicerLayer::TerminusTrackingMap::TerminusTrackingMap(Terminus::Index end_idx) :
m_terminus_old_to_cur_map(end_idx)
{
// Initialize map to everything points to itself since nothing has moved yet.
for (size_t idx = 0U; idx != end_idx; ++idx)
{
m_terminus_old_to_cur_map[idx] = Terminus{idx};
}
m_terminus_cur_to_old_map = m_terminus_old_to_cur_map;
}
void SlicerLayer::TerminusTrackingMap::updateMap(
size_t num_terms,
const Terminus *cur_terms, const Terminus *next_terms,
size_t num_removed_terms,
const Terminus *removed_cur_terms)
{
// save old locations
std::vector<Terminus> old_terms(num_terms);
for (size_t idx = 0U; idx != num_terms; ++idx)
{
old_terms[idx] = getOldFromCur(cur_terms[idx]);
}
// update using maps old <-> cur and cur <-> next
for (size_t idx = 0U; idx != num_terms; ++idx)
{
m_terminus_old_to_cur_map[old_terms[idx].asIndex()] = next_terms[idx];
Terminus next_term = next_terms[idx];
if (next_term != Terminus::INVALID_TERMINUS)
{
m_terminus_cur_to_old_map[next_term.asIndex()] = old_terms[idx];
}
}
// remove next locations that no longer exist
for (size_t rem_idx = 0U; rem_idx != num_removed_terms; ++rem_idx)
{
m_terminus_cur_to_old_map[removed_cur_terms[rem_idx].asIndex()] =
Terminus::INVALID_TERMINUS;
}
}
void SlicerLayer::connectOpenPolylinesImpl(Polygons& open_polylines, coord_t max_dist, coord_t cell_size, bool allow_reverse)
{
// below code closes smallest gaps first
std::priority_queue<PossibleStitch> stitch_queue =
findPossibleStitches(open_polylines, max_dist, cell_size, allow_reverse);
static const Terminus INVALID_TERMINUS = Terminus::INVALID_TERMINUS;
Terminus::Index terminus_end_idx = Terminus::endIndexFromPolylineEndIndex(open_polylines.size());
// Keeps track of how polyline end point locations move around
TerminusTrackingMap terminus_tracking_map(terminus_end_idx);
while (!stitch_queue.empty())
{
// Get the next best stitch
PossibleStitch next_stitch;
next_stitch = stitch_queue.top();
stitch_queue.pop();
Terminus old_terminus_0 = next_stitch.terminus_0;
Terminus terminus_0 = terminus_tracking_map.getCurFromOld(old_terminus_0);
if (terminus_0 == INVALID_TERMINUS)
{
// if we already used this terminus, then this stitch is no longer usable
continue;
}
Terminus old_terminus_1 = next_stitch.terminus_1;
Terminus terminus_1 = terminus_tracking_map.getCurFromOld(old_terminus_1);
if (terminus_1 == INVALID_TERMINUS)
{
// if we already used this terminus, then this stitch is no longer usable
continue;
}
size_t best_polyline_0_idx = terminus_0.getPolylineIdx();
size_t best_polyline_1_idx = terminus_1.getPolylineIdx();
// check to see if this completes a polygon
bool completed_poly = best_polyline_0_idx == best_polyline_1_idx;
if (completed_poly)
{
// finished polygon
PolygonRef polyline_0 = open_polylines[best_polyline_0_idx];
polygons.add(polyline_0);
polyline_0.clear();
Terminus cur_terms[2] = {{best_polyline_0_idx, false},
{best_polyline_0_idx, true}};
for (size_t idx = 0U; idx != 2U; ++idx)
{
terminus_tracking_map.markRemoved(cur_terms[idx]);
}
continue;
}
// we need to join these polylines
// plan how to join polylines
bool reverse[2];
planPolylineStitch(open_polylines, terminus_0, terminus_1, reverse);
// need to reread since planPolylineStitch can swap terminus_0/1
best_polyline_0_idx = terminus_0.getPolylineIdx();
best_polyline_1_idx = terminus_1.getPolylineIdx();
PolygonRef polyline_0 = open_polylines[best_polyline_0_idx];
PolygonRef polyline_1 = open_polylines[best_polyline_1_idx];
// join polylines according to plan
joinPolylines(polyline_0, polyline_1, reverse);
// update terminus_tracking_map
Terminus cur_terms[4] = {{best_polyline_0_idx, false},
{best_polyline_0_idx, true},
{best_polyline_1_idx, false},
{best_polyline_1_idx, true}};
Terminus next_terms[4] = {{best_polyline_0_idx, false},
INVALID_TERMINUS,
INVALID_TERMINUS,
{best_polyline_0_idx, true}};
if (reverse[0])
{
std::swap(next_terms[0],next_terms[1]);
}
if (reverse[1])
{
std::swap(next_terms[2],next_terms[3]);
}
// cur_terms -> next_terms has movement map
// best_polyline_1 is always removed
terminus_tracking_map.updateMap(4U, cur_terms, next_terms,
2U, &cur_terms[2]);
}
}
void SlicerLayer::stitch_extensive(Polygons& open_polylines)
{
//For extensive stitching find 2 open polygons that are touching 2 closed polygons.
// Then find the shortest path over this polygon that can be used to connect the open polygons,
// And generate a path over this shortest bit to link up the 2 open polygons.
// (If these 2 open polygons are the same polygon, then the final result is a closed polyon)
while(1)
{
unsigned int best_polyline_1_idx = -1;
unsigned int best_polyline_2_idx = -1;
GapCloserResult best_result;
best_result.len = POINT_MAX;
best_result.polygonIdx = -1;
best_result.pointIdxA = -1;
best_result.pointIdxB = -1;
for(unsigned int polyline_1_idx = 0; polyline_1_idx < open_polylines.size(); polyline_1_idx++)
{
PolygonRef polyline_1 = open_polylines[polyline_1_idx];
if (polyline_1.size() < 1) continue;
{
GapCloserResult res = findPolygonGapCloser(polyline_1[0], polyline_1.back());
if (res.len > 0 && res.len < best_result.len)
{
best_polyline_1_idx = polyline_1_idx;
best_polyline_2_idx = polyline_1_idx;
best_result = res;
}
}
for(unsigned int polyline_2_idx = 0; polyline_2_idx < open_polylines.size(); polyline_2_idx++)
{
PolygonRef polyline_2 = open_polylines[polyline_2_idx];
if (polyline_2.size() < 1 || polyline_1_idx == polyline_2_idx) continue;
GapCloserResult res = findPolygonGapCloser(polyline_1[0], polyline_2.back());
if (res.len > 0 && res.len < best_result.len)
{
best_polyline_1_idx = polyline_1_idx;
best_polyline_2_idx = polyline_2_idx;
best_result = res;
}
}
}
if (best_result.len < POINT_MAX)
{
if (best_polyline_1_idx == best_polyline_2_idx)
{
if (best_result.pointIdxA == best_result.pointIdxB)
{
polygons.add(open_polylines[best_polyline_1_idx]);
open_polylines[best_polyline_1_idx].clear();
}
else if (best_result.AtoB)
{
PolygonRef poly = polygons.newPoly();
for(unsigned int j = best_result.pointIdxA; j != best_result.pointIdxB; j = (j + 1) % polygons[best_result.polygonIdx].size())
poly.add(polygons[best_result.polygonIdx][j]);
for(unsigned int j = open_polylines[best_polyline_1_idx].size() - 1; int(j) >= 0; j--)
poly.add(open_polylines[best_polyline_1_idx][j]);
open_polylines[best_polyline_1_idx].clear();
}
else
{
unsigned int n = polygons.size();
polygons.add(open_polylines[best_polyline_1_idx]);
for(unsigned int j = best_result.pointIdxB; j != best_result.pointIdxA; j = (j + 1) % polygons[best_result.polygonIdx].size())
polygons[n].add(polygons[best_result.polygonIdx][j]);
open_polylines[best_polyline_1_idx].clear();
}
}
else
{
if (best_result.pointIdxA == best_result.pointIdxB)
{
for(unsigned int n=0; n<open_polylines[best_polyline_1_idx].size(); n++)
open_polylines[best_polyline_2_idx].add(open_polylines[best_polyline_1_idx][n]);
open_polylines[best_polyline_1_idx].clear();
}
else if (best_result.AtoB)
{
Polygon poly;
for(unsigned int n = best_result.pointIdxA; n != best_result.pointIdxB; n = (n + 1) % polygons[best_result.polygonIdx].size())
poly.add(polygons[best_result.polygonIdx][n]);
for(unsigned int n=poly.size()-1;int(n) >= 0; n--)
open_polylines[best_polyline_2_idx].add(poly[n]);
for(unsigned int n=0; n<open_polylines[best_polyline_1_idx].size(); n++)
open_polylines[best_polyline_2_idx].add(open_polylines[best_polyline_1_idx][n]);
open_polylines[best_polyline_1_idx].clear();
}
else
{
for(unsigned int n = best_result.pointIdxB; n != best_result.pointIdxA; n = (n + 1) % polygons[best_result.polygonIdx].size())
open_polylines[best_polyline_2_idx].add(polygons[best_result.polygonIdx][n]);
for(unsigned int n = open_polylines[best_polyline_1_idx].size() - 1; int(n) >= 0; n--)
open_polylines[best_polyline_2_idx].add(open_polylines[best_polyline_1_idx][n]);
open_polylines[best_polyline_1_idx].clear();
}
}
}
else
{
break;
}
}
}
GapCloserResult SlicerLayer::findPolygonGapCloser(Point ip0, Point ip1)
{
GapCloserResult ret;
ClosePolygonResult c1 = findPolygonPointClosestTo(ip0);
ClosePolygonResult c2 = findPolygonPointClosestTo(ip1);
if (c1.polygonIdx < 0 || c1.polygonIdx != c2.polygonIdx)
{
ret.len = -1;
return ret;
}
ret.polygonIdx = c1.polygonIdx;
ret.pointIdxA = c1.pointIdx;
ret.pointIdxB = c2.pointIdx;
ret.AtoB = true;
if (ret.pointIdxA == ret.pointIdxB)
{
//Connection points are on the same line segment.
ret.len = vSize(ip0 - ip1);
}else{
//Find out if we have should go from A to B or the other way around.
Point p0 = polygons[ret.polygonIdx][ret.pointIdxA];
int64_t lenA = vSize(p0 - ip0);
for(unsigned int i = ret.pointIdxA; i != ret.pointIdxB; i = (i + 1) % polygons[ret.polygonIdx].size())
{
Point p1 = polygons[ret.polygonIdx][i];
lenA += vSize(p0 - p1);
p0 = p1;
}
lenA += vSize(p0 - ip1);
p0 = polygons[ret.polygonIdx][ret.pointIdxB];
int64_t lenB = vSize(p0 - ip1);
for(unsigned int i = ret.pointIdxB; i != ret.pointIdxA; i = (i + 1) % polygons[ret.polygonIdx].size())
{
Point p1 = polygons[ret.polygonIdx][i];
lenB += vSize(p0 - p1);
p0 = p1;
}
lenB += vSize(p0 - ip0);
if (lenA < lenB)
{
ret.AtoB = true;
ret.len = lenA;
}else{
ret.AtoB = false;
ret.len = lenB;
}
}
return ret;
}
ClosePolygonResult SlicerLayer::findPolygonPointClosestTo(Point input)
{
ClosePolygonResult ret;
for(unsigned int n=0; n<polygons.size(); n++)
{
Point p0 = polygons[n][polygons[n].size()-1];
for(unsigned int i=0; i<polygons[n].size(); i++)
{
Point p1 = polygons[n][i];
//Q = A + Normal( B - A ) * ((( B - A ) dot ( P - A )) / VSize( A - B ));
Point pDiff = p1 - p0;
int64_t lineLength = vSize(pDiff);
if (lineLength > 1)
{
int64_t distOnLine = dot(pDiff, input - p0) / lineLength;
if (distOnLine >= 0 && distOnLine <= lineLength)
{
Point q = p0 + pDiff * distOnLine / lineLength;
if (shorterThen(q - input, MM2INT(0.1)))
{
ret.polygonIdx = n;
ret.pointIdx = i;
return ret;
}
}
}
p0 = p1;
}
}
ret.polygonIdx = -1;
return ret;
}
void SlicerLayer::makePolygons(const Mesh* mesh)
{
Polygons open_polylines;
makeBasicPolygonLoops(open_polylines);
connectOpenPolylines(open_polylines);
// TODO: (?) for mesh surface mode: connect open polygons. Maybe the above algorithm can create two open polygons which are actually connected when the starting segment is in the middle between the two open polygons.
if (mesh->settings.get<ESurfaceMode>("magic_mesh_surface_mode") == ESurfaceMode::NORMAL)
{ // don't stitch when using (any) mesh surface mode, i.e. also don't stitch when using mixed mesh surface and closed polygons, because then polylines which are supposed to be open will be closed
stitch(open_polylines);
}
if (mesh->settings.get<bool>("meshfix_extensive_stitching"))
{
stitch_extensive(open_polylines);
}
if (mesh->settings.get<bool>("meshfix_keep_open_polygons"))
{
for (PolygonRef polyline : open_polylines)
{
if (polyline.size() > 0)
polygons.add(polyline);
}
}
for (PolygonRef polyline : open_polylines)
{
if (polyline.size() > 0)
{
openPolylines.add(polyline);
}
}
//Remove all the tiny polygons, or polygons that are not closed. As they do not contribute to the actual print.
const coord_t snap_distance = std::max(mesh->settings.get<coord_t>("minimum_polygon_circumference"), static_cast<coord_t>(1));
auto it = std::remove_if(polygons.begin(), polygons.end(), [snap_distance](PolygonRef poly) { return poly.shorterThan(snap_distance); });
polygons.erase(it, polygons.end());
//Finally optimize all the polygons. Every point removed saves time in the long run.
polygons.simplify();
polygons.removeDegenerateVerts(); // remove verts connected to overlapping line segments
// Clean up polylines for Surface Mode printing
it = std::remove_if(openPolylines.begin(), openPolylines.end(), [snap_distance](PolygonRef poly) { return poly.shorterThan(snap_distance); });
openPolylines.erase(it, openPolylines.end());
openPolylines.removeDegenerateVertsPolyline();
}
Slicer::Slicer(Mesh* i_mesh, const coord_t thickness, const size_t slice_layer_count,
bool use_variable_layer_heights, std::vector<AdaptiveLayer>* adaptive_layers)
: mesh(i_mesh)
{
const SlicingTolerance slicing_tolerance = mesh->settings.get<SlicingTolerance>("slicing_tolerance");
const coord_t initial_layer_thickness =
Application::getInstance().current_slice->scene.current_mesh_group->settings.get<coord_t>("layer_height_0");
assert(slice_layer_count > 0);
TimeKeeper slice_timer;
layers =
buildLayersWithHeight(slice_layer_count, slicing_tolerance, initial_layer_thickness, thickness,
use_variable_layer_heights, adaptive_layers);
std::vector<std::pair<int32_t, int32_t>> zbbox = buildZHeightsForFaces(*mesh);
buildSegments(*mesh, zbbox, slicing_tolerance, layers);
log("slice of mesh took %.3f seconds\n", slice_timer.restart());
makePolygons(*i_mesh, slicing_tolerance, layers);
log("slice make polygons took %.3f seconds\n", slice_timer.restart());
}
void Slicer::buildSegments
(
const Mesh& mesh,
const std::vector<std::pair<int32_t, int32_t>> &zbbox,
const SlicingTolerance& slicing_tolerance,
std::vector<SlicerLayer>& layers
)
{
// OpenMP
#pragma omp parallel for default(none) shared(mesh, zbbox, slicing_tolerance, layers)
// Use a signed type for the loop counter so MSVC compiles (because it uses OpenMP 2.0, an old version).
for (int layer_nr = 0; layer_nr < static_cast<int>(layers.size()); layer_nr++)
{
const int32_t& z = layers[layer_nr].z;
layers[layer_nr].segments.reserve(100);
// loop over all mesh faces
for (unsigned int mesh_idx = 0; mesh_idx < mesh.faces.size(); mesh_idx++)
{
if ((z < zbbox[mesh_idx].first) || (z > zbbox[mesh_idx].second))
{
continue;
}
// get all vertices per face
const MeshFace& face = mesh.faces[mesh_idx];
const MeshVertex& v0 = mesh.vertices[face.vertex_index[0]];
const MeshVertex& v1 = mesh.vertices[face.vertex_index[1]];
const MeshVertex& v2 = mesh.vertices[face.vertex_index[2]];
// get all vertices represented as 3D point
Point3 p0 = v0.p;
Point3 p1 = v1.p;
Point3 p2 = v2.p;
// Compensate for points exactly on the slice-boundary, except for 'inclusive', which already handles this correctly.
if (slicing_tolerance != SlicingTolerance::INCLUSIVE)
{
p0.z += static_cast<int>(p0.z == z);
p1.z += static_cast<int>(p1.z == z);
p2.z += static_cast<int>(p2.z == z);
}
SlicerSegment s;
s.endVertex = nullptr;
int end_edge_idx = -1;
/*
Now see if the triangle intersects the layer, and if so, where.
Edge cases are important here:
- If all three vertices of the triangle are exactly on the layer,
don't count the triangle at all, because if the model is
watertight, there will be adjacent triangles on all 3 sides that
are not flat on the layer.
- If two of the vertices are exactly on the layer, only count the
triangle if the last vertex is going up. We can't count both
upwards and downwards triangles here, because if the model is
manifold there will always be an adjacent triangle that is going
the other way and you'd get double edges. You would also get one
layer too many if the total model height is an exact multiple of
the layer thickness. Between going up and going down, we need to
choose the triangles going up, because otherwise the first layer
of where the model starts will be empty and the model will float
in mid-air. We'd much rather let the last layer be empty in that
case.
- If only one of the vertices is exactly on the layer, the
intersection between the triangle and the plane would be a point.
We can't print points and with a manifold model there would be
line segments adjacent to the point on both sides anyway, so we
need to discard this 0-length line segment then.
- Vertices in ccw order if look from outside.
*/
if (p0.z < z && p1.z > z && p2.z > z) // 1_______2
{ // \ /
s = project2D(p0, p2, p1, z); //------------- z
end_edge_idx = 0; // \ /
} // 0
else if (p0.z > z && p1.z <= z && p2.z <= z) // 0
{ // / \ .
s = project2D(p0, p1, p2, z); //------------- z
end_edge_idx = 2; // / \ .
if (p2.z == z) // 1_______2
{
s.endVertex = &v2;
}
}
else if (p1.z < z && p0.z > z && p2.z > z) // 0_______2
{ // \ /
s = project2D(p1, p0, p2, z); //------------- z
end_edge_idx = 1; // \ /
} // 1
else if (p1.z > z && p0.z <= z && p2.z <= z) // 1
{ // / \ .
s = project2D(p1, p2, p0, z); //------------- z
end_edge_idx = 0; // / \ .
if (p0.z == z) // 0_______2
{
s.endVertex = &v0;
}
}
else if (p2.z < z && p1.z > z && p0.z > z) // 0_______1
{ // \ /
s = project2D(p2, p1, p0, z); //------------- z
end_edge_idx = 2; // \ /
} // 2
else if (p2.z > z && p1.z <= z && p0.z <= z) // 2
{ // / \ .
s = project2D(p2, p0, p1, z); //------------- z
end_edge_idx = 1; // / \ .
if (p1.z == z) // 0_______1
{
s.endVertex = &v1;
}
}
else
{
//Not all cases create a segment, because a point of a face could create just a dot, and two touching faces
// on the slice would create two segments
continue;
}
// store the segments per layer
layers[layer_nr].face_idx_to_segment_idx.insert(std::make_pair(mesh_idx, layers[layer_nr].segments.size()));
s.faceIndex = mesh_idx;
s.endOtherFaceIdx = face.connected_face_index[end_edge_idx];
s.addedToPolygon = false;
layers[layer_nr].segments.push_back(s);
}
}
}
std::vector<SlicerLayer> Slicer::buildLayersWithHeight(size_t slice_layer_count, SlicingTolerance slicing_tolerance,
coord_t initial_layer_thickness, coord_t thickness, bool use_variable_layer_heights,
const std::vector<AdaptiveLayer>* adaptive_layers)
{
std::vector<SlicerLayer> layers_res;
layers_res.resize(slice_layer_count);
// set (and initialize compensation for) initial layer, depending on slicing mode
layers_res[0].z = slicing_tolerance == SlicingTolerance::INCLUSIVE ? 0 : std::max(0LL, initial_layer_thickness - thickness);
coord_t adjusted_layer_offset = initial_layer_thickness;
if (use_variable_layer_heights)
{
layers_res[0].z = (*adaptive_layers)[0].z_position;
}
else if (slicing_tolerance == SlicingTolerance::MIDDLE)
{
layers_res[0].z = initial_layer_thickness / 2;
adjusted_layer_offset = initial_layer_thickness + (thickness / 2);
}
// define all layer z positions (depending on slicing mode, see above)
for (unsigned int layer_nr = 1; layer_nr < slice_layer_count; layer_nr++)
{
if (use_variable_layer_heights)
{
layers_res[layer_nr].z = (*adaptive_layers)[layer_nr].z_position;
}
else
{
layers_res[layer_nr].z = adjusted_layer_offset + (thickness * (layer_nr - 1));
}
}
return layers_res;
}
void Slicer::makePolygons(Mesh& mesh, SlicingTolerance slicing_tolerance, std::vector<SlicerLayer>& layers)
{
std::vector<SlicerLayer>& layers_ref = layers; // force layers not to be copied into the threads