-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_mnist.py
executable file
·168 lines (135 loc) · 6.46 KB
/
train_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/env python
import argparse
import torch
from torchvision.transforms import transforms
import pytorch_trainer
import torch.nn.functional as F
import torch.nn as nn
from torchvision import datasets
from pytorch_trainer import training
from pytorch_trainer.training import extensions
from pytorch_trainer import reporter
import matplotlib
matplotlib.use('Agg')
# Network definition
class MLP(nn.Module):
def __init__(self, n_in, n_units, n_out):
super(MLP, self).__init__()
self.l1 = nn.Linear(n_in, n_units) # n_in -> n_units
self.l2 = nn.Linear(n_units, n_units) # n_units -> n_units
self.l3 = nn.Linear(n_units, n_out) # n_units -> n_out
def forward(self, x):
x = x.view((len(x), -1))
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return F.log_softmax(self.l3(h2), dim=1)
def accuracy(y, t):
pred = y.argmax(1).reshape(t.shape)
acc = (pred == t).mean(dtype=y.dtype)
return acc
class Classifier(nn.Module):
def __init__(self, predictor):
super(Classifier, self).__init__()
self.predictor = predictor
def forward(self, x, t):
y = self.predictor(x)
loss = F.nll_loss(y, t)
reporter.report({'loss': loss}, self)
acc = accuracy(y, t)
reporter.report({'accuracy': acc}, self)
return loss
def main():
parser = argparse.ArgumentParser(description='Chainer example: MNIST')
parser.add_argument('--batchsize', '-b', type=int, default=100,
help='Number of images in each mini-batch')
parser.add_argument('--epoch', '-e', type=int, default=20,
help='Number of sweeps over the dataset to train')
parser.add_argument('--frequency', '-f', type=int, default=-1,
help='Frequency of taking a snapshot')
parser.add_argument('--device', '-d', type=str, default='-1',
help='Device specifier. Either ChainerX device '
'specifier or an integer. If non-negative integer, '
'CuPy arrays with specified device id are used. If '
'negative integer, NumPy arrays are used')
parser.add_argument('--out', '-o', default='result',
help='Directory to output the result')
parser.add_argument('--resume', '-r', type=str,
help='Resume the training from snapshot')
parser.add_argument('--autoload', action='store_true',
help='Automatically load trainer snapshots in case'
' of preemption or other temporary system failure')
parser.add_argument('--unit', '-u', type=int, default=1000,
help='Number of units')
group = parser.add_argument_group('deprecated arguments')
group.add_argument('--gpu', '-g', dest='device',
type=int, nargs='?', const=0,
help='GPU ID (negative value indicates CPU)')
args = parser.parse_args()
device = torch.device(args.device)
print('Device: {}'.format(device))
print('# Minibatch-size: {}'.format(args.batchsize))
print('# epoch: {}'.format(args.epoch))
print('')
# Set up a neural network to train
# Classifier reports softmax cross entropy loss and accuracy at every
# iteration, which will be used by the PrintReport extension below.
model = Classifier(MLP(784, args.unit, 10))
model.to(device)
# Setup an optimizer
optimizer = torch.optim.Adam(model.parameters())
# Load the MNIST dataset
transform = transforms.ToTensor()
train = datasets.MNIST('data', train=True, download=True, transform=transform)
test = datasets.MNIST('data', train=False, transform=transform)
train_iter = pytorch_trainer.iterators.SerialIterator(train, args.batchsize)
test_iter = pytorch_trainer.iterators.SerialIterator(test, args.batchsize,
repeat=False, shuffle=False)
# Set up a trainer
updater = training.updaters.StandardUpdater(
train_iter, optimizer, model, device=device)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
# Evaluate the model with the test dataset for each epoch
trainer.extend(extensions.Evaluator(test_iter, model, device=device),
call_before_training=True)
# Dump a computational graph from 'loss' variable at the first iteration
# The "main" refers to the target link of the "main" optimizer.
# trainer.extend(extensions.DumpGraph('main/loss'))
# Take a snapshot for each specified epoch
frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)
# Take a snapshot each ``frequency`` epoch, delete old stale
# snapshots and automatically load from snapshot files if any
# files are already resident at result directory.
trainer.extend(extensions.snapshot(n_retains=1, autoload=args.autoload),
trigger=(frequency, 'epoch'))
# Write a log of evaluation statistics for each epoch
trainer.extend(extensions.LogReport(), call_before_training=True)
# Save two plot images to the result dir
trainer.extend(
extensions.PlotReport(['main/loss', 'validation/main/loss'],
'epoch', file_name='loss.png'),
call_before_training=True)
trainer.extend(
extensions.PlotReport(
['main/accuracy', 'validation/main/accuracy'],
'epoch', file_name='accuracy.png'),
call_before_training=True)
# Print selected entries of the log to stdout
# Here "main" refers to the target link of the "main" optimizer again, and
# "validation" refers to the default name of the Evaluator extension.
# Entries other than 'epoch' are reported by the Classifier link, called by
# either the updater or the evaluator.
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']),
call_before_training=True)
# Print a progress bar to stdout
trainer.extend(extensions.ProgressBar())
if args.resume is not None:
# Resume from a snapshot (Note: this loaded model is to be
# overwritten by --autoload option, autoloading snapshots, if
# any snapshots exist in output directory)
trainer.load_state_dict(torch.load(args.resume))
# Run the training
trainer.run()
if __name__ == '__main__':
main()