Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

abstract creates duplicate theorems / Anomaly: Backtrack.backto 55: a state with no vcs_backup. Please report. (polyproj) #108

Open
JasonGross opened this issue Apr 15, 2014 · 0 comments

Comments

@JasonGross
Copy link

(* -*- mode: coq; coq-prog-args ("-emacs" "-indices-matter") -*- *)
(* NOTE: This bug is only triggered with -load-vernac-source / in interactive mode. *)
(* File reduced by coq-bug-finder from 139 lines to 124 lines. *)
Set Universe Polymorphism.
Reserved Notation "g 'o' f" (at level 40, left associativity).
Generalizable All Variables.
Inductive paths {A : Type} (a : A) : A -> Type :=
  idpath : paths a a.
Arguments idpath {A a} , [A] a.
Notation "x = y :> A" := (@paths A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.

Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y :=
  match p with idpath => u end.

Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y
  := match p with idpath => idpath end.

Definition apD10 {A} {B:A->Type} {f g : forall x, B x} (h:f=g)
: forall x, f x = g x
  := fun x => match h with idpath => idpath end.

Definition ap11 {A B} {f g:A->B} (h:f=g) {x y:A} (p:x=y) : f x = g y.
  admit.
Defined.
Class IsEquiv {A B : Type} (f : A -> B) := {}.
Class Contr_internal (A : Type) := BuildContr {
                                       center : A ;
                                       contr : (forall y : A, center = y)
                                     }.

Arguments center A {_}.

Inductive trunc_index : Type :=
| minus_two : trunc_index
| trunc_S : trunc_index -> trunc_index.

Fixpoint nat_to_trunc_index (n : nat) : trunc_index
  := match n with
       | 0 => trunc_S (trunc_S minus_two)
       | S n' => trunc_S (nat_to_trunc_index n')
     end.

Coercion nat_to_trunc_index : nat >-> trunc_index.

Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type :=
  match n with
    | minus_two => Contr_internal A
    | trunc_S n' => forall (x y : A), IsTrunc_internal n' (x = y)
  end.
Class IsTrunc (n : trunc_index) (A : Type) : Type :=
  Trunc_is_trunc : IsTrunc_internal n A.

Instance istrunc_paths (A : Type) n `{H : IsTrunc (trunc_S n) A} (x y : A)
: IsTrunc n (x = y)
  := H x y.

Notation Contr := (IsTrunc minus_two).

Notation IsHSet := (IsTrunc 0).

Class Funext :=
  { isequiv_apD10 :> forall (A : Type) (P : A -> Type) f g, IsEquiv (@apD10 A P f g) }.
Global Instance contr_forall `{Funext} `{P : A -> Type} `{forall a, Contr (P a)}
: Contr (forall a, P a) | 100.
admit.
Defined.
Hint Extern 0 => progress change Contr_internal with Contr in * : typeclass_instances.
Global Instance trunc_forall `{Funext} `{P : A -> Type} `{forall a, IsTrunc n (P a)}
: IsTrunc n (forall a, P a) | 100.
Proof.
  generalize dependent P.
  induction n as [ | n' IH]; [ | admit ]; simpl; intros P ?.
                                                        exact _.
Defined.
Set Implicit Arguments.

Record PreCategory :=
  { object :> Type;
    morphism : object -> object -> Type;
    identity : forall x, morphism x x;
    compose : forall s d d', morphism d d' -> morphism s d -> morphism s d';
    trunc_morphism : forall s d, IsHSet (morphism s d) }.

Existing Instance trunc_morphism.
Infix "o" := (@compose _ _ _ _) : morphism_scope.
Local Open Scope morphism_scope.

Record Functor (C D : PreCategory) :=
  { object_of :> C -> D;
    morphism_of : forall s d, morphism C s d
                              -> morphism D (object_of s) (object_of d);
    composition_of : forall s d d'
                            (m1 : morphism C s d) (m2: morphism C d d'),
                       morphism_of _ _ (m2 o m1)
                       = (morphism_of _ _ m2) o (morphism_of _ _ m1);
    identity_of : forall x, morphism_of _ _ (@identity _ x)
                            = @identity _ (object_of x) }.

Definition Sect {A B : Type} (s : A -> B) (r : B -> A) :=
  forall x : A, r (s x) = x.

Section path_functor.
  Context `{Funext}.
  Variable C : PreCategory.
  Variable D : PreCategory.
  Local Notation path_functor'_T F G
    := { HO : object_of F = object_of G
       | transport (fun GO => forall s d, morphism C s d -> morphism D (GO s) (GO d))
                   HO
                   (morphism_of F)
         = morphism_of G }
         (only parsing).
  Definition path_functor'_sig (F G : Functor C D) : path_functor'_T F G -> F = G.
  Proof.
    intros [H' H''].
    destruct F, G; simpl in *.
    induction H'; induction H''; simpl.
    apply ap11; [ apply ap | ];
    apply center; abstract exact _.
    Set Printing Universes.
    (* Fail Defined.*)
  (* The command has indeed failed with message:
=> Error: path_functor'_sig_subproof already exists. *)
  Defined.
(* Anomaly: Backtrack.backto 55: a state with no vcs_backup. Please report. *)
End path_functor.

Warning: This bug is very finicky. For example, removing the unused definition Sect makes the error go away. Also, it only happens in interactive mode (or -load-vernac-source) with -indices-matter.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant