-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathBST Construction.py
217 lines (188 loc) · 7.29 KB
/
BST Construction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""
Write a BST class for a Binary Search Tree.The class should support:
- Inserting values with the insert method.
- Removing value with the remove method; this method
should only remove the first instance of a given value
- Searching for values with the contains method
Note that you can't remove values from a single-node tree.In
other words,calling the remove method a single-node tree should simply
not do anything.
Each BST node has an integer value,a left child node,and a right child node.
A node is said to be a valid BST node if and only if it satisfies the BST
property: Its value is strictly greater than the values of every node to its
left; its value is less than or equal to the values of every node to its right,
and its children nodes are either valid BST nodes themselves or None / null.
Sample Usage
// Assume the following BST has already been created:
10
/ \
5 15
/ \ / \
2 5 13 22
/ \
1 14
// All operations below are performed sequentially.
insert(12):
10
/ \
5 15
/ \ / \
2 5 13 22
/ / \
1 12 14
remove(10)
12
/ \
5 15
/ \ / \
2 5 13 22
/ \
1 14
contains(15): true
"""
# SOLUTION 1
# Recursive solution
class BST:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
# Average : O(log(n)) time | O(log(n)) space
# Worst : O(n) time | O(n) space
def insert(self, value):
if value < self.value:
if self.left is None:
self.left = BST(value)
else:
self.left.insert(value)
else:
if self.right is None:
self.right = BST(value)
else:
self.right.insert(value)
return self
# Average : O(log(n)) time | O(log(n)) space
# Worst : O(n) time | O(n) space
def contains(self, value):
if value < self.value:
if self.left is None:
return False
else:
return self.left.contains(value)
elif value > self.value:
if self.right is None:
return False
else:
return self.right.contains(value)
else:
return True
# Average : O(log(n)) time | O(log(n)) space
# Worst : O(n) time | O(n) space
def remove(self, value, parent=None):
if value < self.value:
if self.left is not None:
self.left.remove(value, self)
elif value > self.value:
if self.right is not None:
self.right.remove(value, self)
else:
if self.left is not None and self.right is not None:
self.value = self.right.getMinValue()
self.right.remove(self.value, self)
elif parent is None:
if self.left is not None:
self.value = self.left.value
self.right = self.left.right
self.left = self.left.left
elif self.right is not None:
self.value = self.right.value
self.left = self.right.left
self.right = self.right.right
else:
# this is a single node tree do nothing
pass
elif parent.left == self:
parent.left = self.left if self.left is not None else self.right
elif parent.right == self:
parent.right = self.left if self.left is not None else self.right
return self
def getMinValue(self):
currentNode = self
while currentNode.left is not None:
currentNode = currentNode.left
return currentNode.value
# SOLUTION 2
# Iterative solution
class BST:
def __init__(self, value):
self.value = value
self.left = None
self.right = None
# Average : O(log(n)) time | O(1) space
# Worst : O(n) time | O(1) space
def insert(self, value):
currentNode = self
while True:
if value < currentNode.value:
if currentNode.left is None:
currentNode.left = BST(value)
break
else:
currentNode = currentNode.left
else:
if currentNode.right is None:
currentNode.right = BST(value)
break
else:
currentNode = currentNode.right
return self
# Average : O(log(n)) time | O(1)) space
# Worst : O(n) time | O(1) space
def contains(self, value):
currentNode = self
while currentNode is not None:
if value < currentNode.value:
currentNode = currentNode.left
elif value > currentNode.value:
currentNode = currentNode.right
else:
return True
return False
# Average : O(log(n)) time | O(1) space
# Worst : O(n) time | O(1) space
def remove(self, value, parentNode=None):
currentNode = self
while currentNode is not None:
if value < currentNode.value:
parentNode = currentNode
currentNode = currentNode.left
elif value > currentNode.value:
parentNode = currentNode
currentNode = currentNode.right
else:
if currentNode.left is not None and currentNode.right is not None:
currentNode.value = currentNode.right.getMinValue()
currentNode.right.remove(currentNode.value, currentNode)
elif parentNode is None:
if currentNode.left is not None:
currentNode.value = currentNode.left.value
currentNode.right = currentNode.left.right
currentNode.left = currentNode.left.left
elif currentNode.right is not None:
currentNode.value = currentNode.left.value
currentNode.left = currentNode.left.left
currentNode.right = currentNode.right.right
else:
# this is a single node tree do nothing
pass
elif parentNode.left == currentNode:
parentNode.left = currentNode.left if currentNode.left is not None else currentNode.right
elif parentNode.right == currentNode:
parentNode.right = currentNode.left if currentNode.left is not None else currentNode.right
break
return self
def getMinValue(self):
currentNode = self
while currentNode.left is not None:
currentNode = currentNode.left
return currentNode.value