-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcamera_utils.py
465 lines (392 loc) · 15 KB
/
camera_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# Copyright 2022 The Nerfstudio Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Camera transformation helper code.
"""
import math
from typing import List, Optional, Tuple
import numpy as np
import torch
from torchtyping import TensorType
from typing_extensions import Literal
_EPS = np.finfo(float).eps * 4.0
def unit_vector(data, axis: Optional[int] = None) -> np.ndarray:
"""Return ndarray normalized by length, i.e. Euclidean norm, along axis.
Args:
axis: the axis along which to normalize into unit vector
out: where to write out the data to. If None, returns a new np ndarray
"""
data = np.array(data, dtype=np.float64, copy=True)
if data.ndim == 1:
data /= math.sqrt(np.dot(data, data))
return data
length = np.atleast_1d(np.sum(data * data, axis))
np.sqrt(length, length)
if axis is not None:
length = np.expand_dims(length, axis)
data /= length
return data
def quaternion_from_matrix(matrix, isprecise: bool = False) -> np.ndarray:
"""Return quaternion from rotation matrix.
Args:
matrix: rotation matrix to obtain quaternion
isprecise: if True, input matrix is assumed to be precise rotation matrix and a faster algorithm is used.
"""
M = np.array(matrix, dtype=np.float64, copy=False)[:4, :4]
if isprecise:
q = np.empty((4,))
t = np.trace(M)
if t > M[3, 3]:
q[0] = t
q[3] = M[1, 0] - M[0, 1]
q[2] = M[0, 2] - M[2, 0]
q[1] = M[2, 1] - M[1, 2]
else:
i, j, k = 1, 2, 3
if M[1, 1] > M[0, 0]:
i, j, k = 2, 3, 1
if M[2, 2] > M[i, i]:
i, j, k = 3, 1, 2
t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
q[i] = t
q[j] = M[i, j] + M[j, i]
q[k] = M[k, i] + M[i, k]
q[3] = M[k, j] - M[j, k]
q *= 0.5 / math.sqrt(t * M[3, 3])
else:
m00 = M[0, 0]
m01 = M[0, 1]
m02 = M[0, 2]
m10 = M[1, 0]
m11 = M[1, 1]
m12 = M[1, 2]
m20 = M[2, 0]
m21 = M[2, 1]
m22 = M[2, 2]
# symmetric matrix K
K = np.array(
[
[m00 - m11 - m22, 0.0, 0.0, 0.0],
[m01 + m10, m11 - m00 - m22, 0.0, 0.0],
[m02 + m20, m12 + m21, m22 - m00 - m11, 0.0],
[m21 - m12, m02 - m20, m10 - m01, m00 + m11 + m22],
]
)
K /= 3.0
# quaternion is eigenvector of K that corresponds to largest eigenvalue
w, V = np.linalg.eigh(K)
q = V[np.array([3, 0, 1, 2]), np.argmax(w)]
if q[0] < 0.0:
np.negative(q, q)
return q
def quaternion_slerp(quat0, quat1, fraction: float, spin: int = 0, shortestpath: bool = True) -> np.ndarray:
"""Return spherical linear interpolation between two quaternions.
Args:
quat0: first quaternion
quat1: second quaternion
fraction: how much to interpolate between quat0 vs quat1 (if 0, closer to quat0; if 1, closer to quat1)
spin: how much of an additional spin to place on the interpolation
shortestpath: whether to return the short or long path to rotation
"""
q0 = unit_vector(quat0[:4])
q1 = unit_vector(quat1[:4])
if q0 is None or q1 is None:
raise ValueError("Input quaternions invalid.")
if fraction == 0.0:
return q0
if fraction == 1.0:
return q1
d = np.dot(q0, q1)
if abs(abs(d) - 1.0) < _EPS:
return q0
if shortestpath and d < 0.0:
# invert rotation
d = -d
np.negative(q1, q1)
angle = math.acos(d) + spin * math.pi
if abs(angle) < _EPS:
return q0
isin = 1.0 / math.sin(angle)
q0 *= math.sin((1.0 - fraction) * angle) * isin
q1 *= math.sin(fraction * angle) * isin
q0 += q1
return q0
def quaternion_matrix(quaternion) -> np.ndarray:
"""Return homogeneous rotation matrix from quaternion.
Args:
quaternion: value to convert to matrix
"""
q = np.array(quaternion, dtype=np.float64, copy=True)
n = np.dot(q, q)
if n < _EPS:
return np.identity(4)
q *= math.sqrt(2.0 / n)
q = np.outer(q, q)
return np.array(
[
[1.0 - q[2, 2] - q[3, 3], q[1, 2] - q[3, 0], q[1, 3] + q[2, 0], 0.0],
[q[1, 2] + q[3, 0], 1.0 - q[1, 1] - q[3, 3], q[2, 3] - q[1, 0], 0.0],
[q[1, 3] - q[2, 0], q[2, 3] + q[1, 0], 1.0 - q[1, 1] - q[2, 2], 0.0],
[0.0, 0.0, 0.0, 1.0],
]
)
def get_interpolated_poses(pose_a, pose_b, steps: int = 10) -> List[float]:
"""Return interpolation of poses with specified number of steps.
Args:
poseA: first pose
poseB: second pose
steps: number of steps the interpolated pose path should contain
"""
quat_a = quaternion_from_matrix(pose_a[:3, :3])
quat_b = quaternion_from_matrix(pose_b[:3, :3])
ts = np.linspace(0, 1, steps)
quats = [quaternion_slerp(quat_a, quat_b, t) for t in ts]
trans = [(1 - t) * pose_a[:3, 3] + t * pose_b[:3, 3] for t in ts]
poses_ab = []
for quat, tran in zip(quats, trans):
pose = np.identity(4)
pose[:3, :3] = quaternion_matrix(quat)[:3, :3]
pose[:3, 3] = tran
poses_ab.append(pose)
return poses_ab
def get_interpolated_k(k_a, k_b, steps: int = 10) -> TensorType[3, 4]:
"""
Returns interpolated path between two camera poses with specified number of steps.
Args:
KA: camera matrix 1
KB: camera matrix 2
steps: number of steps the interpolated pose path should contain
"""
Ks = []
ts = np.linspace(0, 1, steps)
for t in ts:
new_k = k_a * (1.0 - t) + k_b * t
Ks.append(new_k)
return Ks
def get_interpolated_poses_many(
poses: TensorType["num_poses", 3, 4],
Ks: TensorType["num_poses", 3, 3],
steps_per_transition=10,
) -> Tuple[TensorType["num_poses", 3, 4], TensorType["num_poses", 3, 3]]:
"""Return interpolated poses for many camera poses.
Args:
poses: list of camera poses
Ks: list of camera intrinsics
steps_per_transition: number of steps per transition
Returns:
tuple of new poses and intrinsics
"""
traj = []
Ks = []
for idx in range(poses.shape[0] - 1):
pose_a = poses[idx]
pose_b = poses[idx + 1]
poses_ab = get_interpolated_poses(pose_a, pose_b, steps=steps_per_transition)
traj += poses_ab
Ks += get_interpolated_k(Ks[idx], Ks[idx + 1], steps_per_transition)
return torch.stack(traj, dim=0), torch.stack(Ks, dim=0)
def normalize(x) -> TensorType[...]:
"""Returns a normalized vector."""
return x / torch.linalg.norm(x)
def viewmatrix(lookat, up, pos) -> TensorType[...]:
"""Returns a camera transformation matrix.
Args:
lookat: The direction the camera is looking.
up: The upward direction of the camera.
pos: The position of the camera.
Returns:
A camera transformation matrix.
"""
vec2 = normalize(lookat)
vec1_avg = normalize(up)
vec0 = normalize(torch.cross(vec1_avg, vec2))
vec1 = normalize(torch.cross(vec2, vec0))
m = torch.stack([vec0, vec1, vec2, pos], 1)
return m
def get_distortion_params(
k1: float = 0.0,
k2: float = 0.0,
k3: float = 0.0,
k4: float = 0.0,
p1: float = 0.0,
p2: float = 0.0,
) -> TensorType[...]:
"""Returns a distortion parameters matrix.
Args:
k1: The first radial distortion parameter.
k2: The second radial distortion parameter.
k3: The third radial distortion parameter.
k4: The fourth radial distortion parameter.
p1: The first tangential distortion parameter.
p2: The second tangential distortion parameter.
Returns:
torch.Tensor: A distortion parameters matrix.
"""
return torch.Tensor([k1, k2, k3, k4, p1, p2])
@torch.jit.script
def _compute_residual_and_jacobian(
x: torch.Tensor,
y: torch.Tensor,
xd: torch.Tensor,
yd: torch.Tensor,
distortion_params: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor,]:
"""Auxiliary function of radial_and_tangential_undistort() that computes residuals and jacobians.
Adapted from MultiNeRF:
https://github.com/google-research/multinerf/blob/b02228160d3179300c7d499dca28cb9ca3677f32/internal/camera_utils.py#L427-L474
Args:
x: The updated x coordinates.
y: The updated y coordinates.
xd: The distorted x coordinates.
yd: The distorted y coordinates.
distortion_params: The distortion parameters [k1, k2, k3, k4, p1, p2].
Returns:
The residuals (fx, fy) and jacobians (fx_x, fx_y, fy_x, fy_y).
"""
k1 = distortion_params[..., 0]
k2 = distortion_params[..., 1]
k3 = distortion_params[..., 2]
k4 = distortion_params[..., 3]
p1 = distortion_params[..., 4]
p2 = distortion_params[..., 5]
# let r(x, y) = x^2 + y^2;
# d(x, y) = 1 + k1 * r(x, y) + k2 * r(x, y) ^2 + k3 * r(x, y)^3 +
# k4 * r(x, y)^4;
r = x * x + y * y
d = 1.0 + r * (k1 + r * (k2 + r * (k3 + r * k4)))
# The perfect projection is:
# xd = x * d(x, y) + 2 * p1 * x * y + p2 * (r(x, y) + 2 * x^2);
# yd = y * d(x, y) + 2 * p2 * x * y + p1 * (r(x, y) + 2 * y^2);
#
# Let's define
#
# fx(x, y) = x * d(x, y) + 2 * p1 * x * y + p2 * (r(x, y) + 2 * x^2) - xd;
# fy(x, y) = y * d(x, y) + 2 * p2 * x * y + p1 * (r(x, y) + 2 * y^2) - yd;
#
# We are looking for a solution that satisfies
# fx(x, y) = fy(x, y) = 0;
fx = d * x + 2 * p1 * x * y + p2 * (r + 2 * x * x) - xd
fy = d * y + 2 * p2 * x * y + p1 * (r + 2 * y * y) - yd
# Compute derivative of d over [x, y]
d_r = k1 + r * (2.0 * k2 + r * (3.0 * k3 + r * 4.0 * k4))
d_x = 2.0 * x * d_r
d_y = 2.0 * y * d_r
# Compute derivative of fx over x and y.
fx_x = d + d_x * x + 2.0 * p1 * y + 6.0 * p2 * x
fx_y = d_y * x + 2.0 * p1 * x + 2.0 * p2 * y
# Compute derivative of fy over x and y.
fy_x = d_x * y + 2.0 * p2 * y + 2.0 * p1 * x
fy_y = d + d_y * y + 2.0 * p2 * x + 6.0 * p1 * y
return fx, fy, fx_x, fx_y, fy_x, fy_y
@torch.jit.script
def radial_and_tangential_undistort(
coords: torch.Tensor,
distortion_params: torch.Tensor,
eps: float = 1e-3,
max_iterations: int = 10,
) -> torch.Tensor:
"""Computes undistorted coords given opencv distortion parameters.
Addapted from MultiNeRF
https://github.com/google-research/multinerf/blob/b02228160d3179300c7d499dca28cb9ca3677f32/internal/camera_utils.py#L477-L509
Args:
coords: The distorted coordinates.
distortion_params: The distortion parameters [k1, k2, k3, k4, p1, p2].
eps: The epsilon for the convergence.
max_iterations: The maximum number of iterations to perform.
Returns:
The undistorted coordinates.
"""
# Initialize from the distorted point.
x = coords[..., 0]
y = coords[..., 1]
for _ in range(max_iterations):
fx, fy, fx_x, fx_y, fy_x, fy_y = _compute_residual_and_jacobian(
x=x, y=y, xd=coords[..., 0], yd=coords[..., 1], distortion_params=distortion_params
)
denominator = fy_x * fx_y - fx_x * fy_y
x_numerator = fx * fy_y - fy * fx_y
y_numerator = fy * fx_x - fx * fy_x
step_x = torch.where(torch.abs(denominator) > eps, x_numerator / denominator, torch.zeros_like(denominator))
step_y = torch.where(torch.abs(denominator) > eps, y_numerator / denominator, torch.zeros_like(denominator))
x = x + step_x
y = y + step_y
return torch.stack([x, y], dim=-1)
def rotation_matrix(a: TensorType[3], b: TensorType[3]) -> TensorType[3, 3]:
"""Compute the rotation matrix that rotates vector a to vector b.
Args:
a: The vector to rotate.
b: The vector to rotate to.
Returns:
The rotation matrix.
"""
a = a / torch.linalg.norm(a)
b = b / torch.linalg.norm(b)
v = torch.cross(a, b)
c = torch.dot(a, b)
# If vectors are exactly opposite, we add a little noise to one of them
if c < -1 + 1e-8:
eps = (torch.rand(3) - 0.5) * 0.01
return rotation_matrix(a + eps, b)
s = torch.linalg.norm(v)
skew_sym_mat = torch.Tensor(
[
[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0],
]
)
return torch.eye(3) + skew_sym_mat + skew_sym_mat @ skew_sym_mat * ((1 - c) / (s**2 + 1e-8))
def auto_orient_and_center_poses(
poses: TensorType["num_poses":..., 4, 4], method: Literal["pca", "up", "none"] = "up", center_poses: bool = True
) -> TensorType["num_poses":..., 3, 4]:
"""Orients and centers the poses. We provide two methods for orientation: pca and up.
pca: Orient the poses so that the principal component of the points is aligned with the axes.
This method works well when all of the cameras are in the same plane.
up: Orient the poses so that the average up vector is aligned with the z axis.
This method works well when images are not at arbitrary angles.
Args:
poses: The poses to orient.
method: The method to use for orientation.
center_poses: If True, the poses are centered around the origin.
Returns:
The oriented poses.
"""
translation = poses[..., :3, 3]
mean_translation = torch.mean(translation, dim=0)
translation_diff = translation - mean_translation
if center_poses:
translation = mean_translation
else:
translation = torch.zeros_like(mean_translation)
if method == "pca":
_, eigvec = torch.linalg.eigh(translation_diff.T @ translation_diff)
eigvec = torch.flip(eigvec, dims=(-1,))
if torch.linalg.det(eigvec) < 0:
eigvec[:, 2] = -eigvec[:, 2]
transform = torch.cat([eigvec, eigvec @ -translation[..., None]], dim=-1)
oriented_poses = transform @ poses
if oriented_poses.mean(axis=0)[2, 1] < 0:
oriented_poses[:, 1:3] = -1 * oriented_poses[:, 1:3]
elif method == "up":
up = torch.mean(poses[:, :3, 1], dim=0)
up = up / torch.linalg.norm(up)
rotation = rotation_matrix(up, torch.Tensor([0, 0, 1]))
transform = torch.cat([rotation, rotation @ -translation[..., None]], dim=-1)
oriented_poses = transform @ poses
elif method == "none":
transform = torch.eye(4)
transform[:3, 3] = -translation
transform = transform[:3, :]
oriented_poses = transform @ poses
return oriented_poses, transform