-
Notifications
You must be signed in to change notification settings - Fork 18
/
train.py
253 lines (209 loc) · 9.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""
Created on April, 2019
@authors: Hulking
"""
import argparse
import time
import torch.distributed as dist
from torch.utils.data import DataLoader
import test # Import test.py to get mAP after each epoch
from models import *
from utils.datasets import *
from utils.utils import *
"""
训练
"""
def train(
cfg,
data_cfg,
img_size=416,
resume=False,
epochs=273, # 500200 batches at bs 64, dataset length 117263
batch_size=16,
accumulate=1,
multi_scale=False,
freeze_backbone=False,
num_workers=4,
transfer=False # Transfer learning (train only YOLO layers)
):
weights = 'weights' + os.sep
latest = weights + 'latest.pt'
best = weights + 'best.pt'
device = torch_utils.select_device()
if multi_scale:
img_size = 608 # initiate with maximum multi_scale size
num_workers = 0 # bug https://github.com/ultralytics/yolov3/issues/174
else:
torch.backends.cudnn.benchmark = True # unsuitable for multiscale
# Configure run
train_path = parse_data_cfg(data_cfg)['train']
# Initialize model
model = Darknet(cfg, img_size).to(device)
# Optimizer
lr0 = 0.001 # initial learning rate
optimizer = torch.optim.SGD(model.parameters(), lr=lr0, momentum=0.9, weight_decay=0.0005)
cutoff = -1 # backbone reaches to cutoff layer
start_epoch = 0
best_loss = float('inf')
nf = int(model.module_defs[model.yolo_layers[0] - 1]['filters']) # yolo layer size (i.e. 255)
if resume: # Load previously saved model
if transfer: # Transfer learning
chkpt = torch.load(weights + 'yolov3.pt', map_location=device)
model.load_state_dict({k: v for k, v in chkpt['model'].items() if v.numel() > 1 and v.shape[0] != 255},
strict=False)
for p in model.parameters():
p.requires_grad = True if p.shape[0] == nf else False
else: # resume from latest.pt
chkpt = torch.load(latest, map_location=device) # load checkpoint
model.load_state_dict(chkpt['model'])
start_epoch = chkpt['epoch'] + 1
if chkpt['optimizer'] is not None:
optimizer.load_state_dict(chkpt['optimizer'])
best_loss = chkpt['best_loss']
del chkpt
else: # Initialize model with backbone (optional)
if '-tiny.cfg' in cfg:
cutoff = load_darknet_weights(model, weights + 'yolov3-tiny.conv.15')
else:
cutoff = load_darknet_weights(model, weights + 'darknet53.conv.74')
# Set scheduler (reduce lr at epochs 218, 245, i.e. batches 400k, 450k)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[218, 245], gamma=0.1,
last_epoch=start_epoch - 1)
# Dataset
dataset = LoadImagesAndLabels(train_path, img_size=img_size, augment=True)
# Initialize distributed training
if torch.cuda.device_count() > 1:
dist.init_process_group(backend=opt.backend, init_method=opt.dist_url, world_size=opt.world_size, rank=opt.rank)
model = torch.nn.parallel.DistributedDataParallel(model)
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
else:
sampler = None
# Dataloader
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=False,
pin_memory=False,
collate_fn=dataset.collate_fn,
sampler=sampler)
# Start training
t = time.time()
model_info(model)
nB = len(dataloader)
n_burnin = min(round(nB / 5 + 1), 1000) # burn-in batches
os.remove('train_batch0.jpg') if os.path.exists('train_batch0.jpg') else None
os.remove('test_batch0.jpg') if os.path.exists('test_batch0.jpg') else None
for epoch in range(start_epoch, epochs):
model.train()
print(('\n%8s%12s' + '%10s' * 7) % ('Epoch', 'Batch', 'xy', 'wh', 'conf', 'cls', 'total', 'nTargets', 'time'))
# Update scheduler
scheduler.step()
# Freeze backbone at epoch 0, unfreeze at epoch 1
if freeze_backbone and epoch < 2:
for name, p in model.named_parameters():
if int(name.split('.')[1]) < cutoff: # if layer < 75
p.requires_grad = False if epoch == 0 else True
mloss = defaultdict(float) # mean loss
for i, (imgs, targets, _, _) in enumerate(dataloader):
imgs = imgs.to(device)
targets = targets.to(device)
nt = len(targets)
if nt == 0: # if no targets continue
continue
# Plot images with bounding boxes
if epoch == 0 and i == 0:
plot_images(imgs=imgs, targets=targets, fname='train_batch0.jpg')
# SGD burn-in
if epoch == 0 and i <= n_burnin:
lr = lr0 * (i / n_burnin) ** 4
for x in optimizer.param_groups:
x['lr'] = lr
# Run model
pred = model(imgs)
# Build targets
target_list = build_targets(model, targets)
# Compute loss
loss, loss_dict = compute_loss(pred, target_list)
# Compute gradient
loss.backward()
# Accumulate gradient for x batches before optimizing
if (i + 1) % accumulate == 0 or (i + 1) == nB:
optimizer.step()
optimizer.zero_grad()
# Running epoch-means of tracked metrics
for key, val in loss_dict.items():
mloss[key] = (mloss[key] * i + val) / (i + 1)
s = ('%8s%12s' + '%10.3g' * 7) % (
'%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, nB - 1),
mloss['xy'], mloss['wh'], mloss['conf'], mloss['cls'],
mloss['total'], nt, time.time() - t)
t = time.time()
print(s)
# Multi-Scale training (320 - 608 pixels) every 10 batches
if multi_scale and (i + 1) % 10 == 0:
dataset.img_size = random.choice(range(10, 20)) * 32
print('multi_scale img_size = %g' % dataset.img_size)
# Calculate mAP
with torch.no_grad():
results = test.test(cfg, data_cfg, batch_size=batch_size, img_size=img_size, model=model)
# Write epoch results
with open('results.txt', 'a') as file:
file.write(s + '%11.3g' * 5 % results + '\n') # P, R, mAP, F1, test_loss
# Update best loss
test_loss = results[4]
if test_loss < best_loss:
best_loss = test_loss
# Save training results
save = True and not opt.nosave
if save:
# Create checkpoint
chkpt = {'epoch': epoch,
'best_loss': best_loss,
'model': model.module.state_dict() if type(
model) is nn.parallel.DistributedDataParallel else model.state_dict(),
'optimizer': optimizer.state_dict()}
# Save latest checkpoint
torch.save(chkpt, latest)
# Save best checkpoint
if best_loss == test_loss:
torch.save(chkpt, best)
# Save backup every 10 epochs (optional)
if epoch > 0 and epoch % 10 == 0:
torch.save(chkpt, weights + 'backup%g.pt' % epoch)
# Delete checkpoint
del chkpt
"""
训练参数
"""
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=273, help='number of epochs')
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
parser.add_argument('--accumulate', type=int, default=1, help='accumulate gradient x batches before optimizing')
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
parser.add_argument('--data-cfg', type=str, default='data/coco.data', help='coco.data file path')
parser.add_argument('--multi-scale', action='store_true', help='random image sizes per batch 320 - 608')
parser.add_argument('--img-size', type=int, default=416, help='pixels')
parser.add_argument('--resume', action='store_true', help='resume training flag')
parser.add_argument('--transfer', action='store_true', help='transfer learning flag')
parser.add_argument('--num-workers', type=int, default=4, help='number of Pytorch DataLoader workers')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:9999', type=str, help='distributed training init method')
parser.add_argument('--rank', default=0, type=int, help='distributed training node rank')
parser.add_argument('--world-size', default=1, type=int, help='number of nodes for distributed training')
parser.add_argument('--backend', default='nccl', type=str, help='distributed backend')
parser.add_argument('--nosave', action='store_true', help='do not save training results')
opt = parser.parse_args()
print(opt, end='\n\n')
init_seeds()
train(
opt.cfg,
opt.data_cfg,
img_size=opt.img_size,
resume=opt.resume or opt.transfer,
transfer=opt.transfer,
epochs=opt.epochs,
batch_size=opt.batch_size,
accumulate=opt.accumulate,
multi_scale=opt.multi_scale,
num_workers=opt.num_workers
)