-
Notifications
You must be signed in to change notification settings - Fork 12
Home
PESTO is a widely applicable and highly customizable toolbox for parameter estimation in MathWorks MATLAB. It offers state-of-the art algorithms for optimization and uncertainty analysis, which work in a very generic manner, treating the objective function as a black box. Hence, PESTO can be used for any parameter estimation problem, which provides an objective function in MATLAB.
PESTO features include:
- Multistart optimization
- Sampling routines
- Profile-likelihood analysis
- Visualization routines
- and more
These functions are demonstrated in several systems biology examples included in the examples/
directory and further documentation is available in doc/PESTO-doc.pdf
.
PESTO has been used in a number of computational biology research projects:
-
Fröhlich, F.; Kaltenbacher, B.; Theis, F. J. & Hasenauer, J. Scalable parameter estimation for genome-scale biochemical reaction networks, PLoS Comput. Biol., 2017, 13, 1-18
-
Hross, S.; Fiedler, A.; Theis, F. J. & Hasenauer, J. Findeisen, R.; Bullinger, E.; Balsa-Canto, E. & Bernaerts, K. (Eds.) Quantitative comparison of competing PDE models for Pom1p dynamics in fission yeast, Proceedings 6th IFAC Conference on Foundations of Systems Biology in Engineering, 2016, 49, 264-269
-
Loos, C.; Fiedler, A. & Hasenauer, J. Bartocci, E.; Lio, P. & Paoletti, N. (Eds.) Parameter estimation for reaction rate equation constrained mixture models, Proceedings of the 13th Computational Methods in Systems Biology, Cambridge, UK, 2016, 9859, 186-200
-
Geissen, E.-M.; Hasenauer, J.; Heinrich, S.; Hauf, S.; Theis, F. J. & Radde, N. MEMO -- Multi-experiment mixture model analysis of censored data, Bioinf., 2016, 32, 2464-2472
-
Hross, S. & Hasenauer, J. Analysis of CFSE time-series data using division-, age- and label-structured population models, Bioinf., 2016, 32, 2321-2329
-
Fröhlich, F.; Thomas, P.; Kazeroonian, A.; Theis, F. J.; Grima, R. & Hasenauer, J. Inference for stochastic chemical kinetics using moment equations and system size expansion, PLoS Comput. Biol., 2016, 12, e1005030
-
Boiger, R.; Hasenauer, J.; Hross, S. & Kaltenbacher, B. Integration based profile likelihood calculation for PDE constrained parameter estimation problems, Inverse Prob., 2016, 32, 125009
-
Fröhlich, F.; Hross, S.; Theis, F. J. & Hasenauer, J. Mendes, P.; Dada, J. O. & Smallbone, K. O'Neill. (Eds.) Radial basis function approximation of Bayesian parameter posterior densities for uncertainty analysis, Proceedings of the 12th International Conference on Computational Methods in Systems Biology (CMSB 2014), 2014, 73-85
-
Fröhlich, F.; Theis, F. J. & Hasenauer, J. Mendes, P.; Dada, J. O. & Smallbone, K. O'Neill. (Eds.) Uncertainty analysis for non-identifiable dynamical systems: Profile likelihoods, bootstrapping and more. Proceedings of the 12th International Conference on Computational Methods in Systems Biology (CMSB 2014), 2014, 61-72
-
Hasenauer, J.; Hasenauer, C.; Hucho, T. & Theis, F. J. ODE constrained mixture modelling: A method for unraveling subpopulation structures and dynamics, PLoS Comput. Biol., 2014, 10, e1003686
-
Heinrich, S.; Geissen, E.-M..; Kamenz, J.; Trautmann, S.; Widmer, C.; Drewe, P.; Knop, M.; Radde, N.; Hasenauer, J. & Hauf, S. Determinants for robustness in spindle assembly checkpoint signalling, Nature Cell Biology, 2013, 15, 1328-1339
-
Hock, S.; Hasenauer, J. & Theis, F. J. Modeling of 2D diffusion processes based on imaging data: Parameter estimation and practical identifiability analysis, BMC Bioinf., 2013, 14(Suppl 10)
-
Kazeroonian, A.; Hasenauer, J. & Theis, F. J. Autio, R.; Shmulevich, I.; Strimmer, K.; Wiuf, C.; Sarbu, S. & Yli-Harja, O. (Eds.) Parameter estimation for stochastic biochemical processes: A comparison of moment equation and finite state projection, Proceedings of 10th International Workshop on Computational Systems Biology, 2013, 66-73