Skip to content

Commit

Permalink
Get tile origin from various point cloud data types
Browse files Browse the repository at this point in the history
  • Loading branch information
leavauchier committed Nov 21, 2024
1 parent 8bc16f8 commit 265ae80
Show file tree
Hide file tree
Showing 5 changed files with 140 additions and 30 deletions.
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,6 @@
- Add tools to get tile origin from various point cloud data types (las file, numpy array, min/max values)
- Raise more explicit error when looking a tile origin when the data width is smaller than the buffer size

# 1.7.4
- Color: fix images bbox to prevent in edge cases where points were at the edge of the last pixel
- Add possibility to remove points of some classes in standardize
Expand Down
43 changes: 42 additions & 1 deletion pdaltools/las_info.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
import osgeo.osr as osr
import pdal

from pdaltools.pcd_info import infer_tile_origin

osr.UseExceptions()


Expand All @@ -17,13 +19,52 @@ def las_info_metadata(filename: str):
return metadata


def get_bounds_from_header_info(metadata):
def get_bounds_from_header_info(metadata: Dict) -> Tuple[float, float, float, float]:
"""Get bounds from metadata that has been extracted previously from the header of a las file
Args:
metadata (str): Dictonary containing metadata from a las file (as extracted with pipeline.quickinfo)
Returns:
uple[float, float, float, float]: minx, maxx, miny, maxy
"""
bounds = metadata["bounds"]
minx, maxx, miny, maxy = bounds["minx"], bounds["maxx"], bounds["miny"], bounds["maxy"]

return minx, maxx, miny, maxy


def get_bounds_from_file_using_header_info(filename: str) -> Tuple[float, float, float, float]:
"""Get bounds from a las file using its header info
Args:
filename (str): Path to the las file
Returns:
Tuple[float, float, float, float]: minx, maxx, miny, maxy
"""
metadata = las_info_metadata(filename)
bounds = metadata["bounds"]
minx, maxx, miny, maxy = bounds["minx"], bounds["maxx"], bounds["miny"], bounds["maxy"]

return minx, maxx, miny, maxy


def get_tile_origin_using_header_info(filename: str, tile_width: int = 1000) -> Tuple[int, int]:
""" "Get las file theoretical origin (xmin, ymax) for a data that originates from a square tesselation/tiling
using the tesselation tile width only, directly from its path
Args:
filename (str): path to the las file
tile_width (int, optional): Tesselation tile width (in meters). Defaults to 1000.
Returns:
Tuple[int, int]: (origin_x, origin_y) tile origin coordinates = theoretical (xmin, ymax)
"""
minx, maxx, miny, maxy = get_bounds_from_file_using_header_info(filename)

return infer_tile_origin(minx, maxx, miny, maxy, tile_width)


def get_epsg_from_header_info(metadata):
if "srs" not in metadata.keys():
raise RuntimeError("EPSG could not be inferred from metadata: No 'srs' key in metadata.")
Expand Down
66 changes: 48 additions & 18 deletions pdaltools/pcd_info.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,42 +5,72 @@
import numpy as np


def infer_tile_origin(minx: float, maxx: float, miny: float, maxy: float, tile_width: int) -> Tuple[int, int]:
"""Get point cloud theoretical origin (xmin, ymax) for a data that originates from a square tesselation/tiling
using the tesselation tile width only, based on the min/max values
Edge values are supposed to be included in the tile
Args:
minx (float): point cloud min x value
maxx (float): point cloud max x value
miny (float): point cloud min y value
maxy (float): point cloud max y value
tile_width (int): tile width in meters
Raises:
ValueError: In case the min and max values do not belong to the same tile
Returns:
Tuple[int, int]: (origin_x, origin_y) tile origin coordinates = theoretical (xmin, ymax)
"""

minx_tile = np.floor(minx / tile_width)
maxx_tile = np.floor(maxx / tile_width) if maxx % tile_width != 0 else np.floor(maxx / tile_width) - 1
miny_tile = np.ceil(miny / tile_width) if miny % tile_width != 0 else np.floor(miny / tile_width) + 1
maxy_tile = np.ceil(maxy / tile_width)

if not (maxx_tile - minx_tile) and not (maxy_tile - miny_tile):
origin_x = minx_tile * tile_width
origin_y = maxy_tile * tile_width
return origin_x, origin_y
else:
raise ValueError(
f"Min values (x={minx} and y={miny}) do not belong to the same theoretical tile as"
f"max values (x={maxx} and y={maxy})."
)


def get_pointcloud_origin_from_tile_width(
points: np.ndarray, tile_width: int = 1000, buffer_size: float = 0
) -> Tuple[int, int]:
"""Get point cloud theoretical origin (xmin, ymax) for a data that originates from a square tesselation/tiling
using the tesselation tile width only.
using the tesselation tile width only, based on the point cloud as a np.ndarray
Edge values are supposed to be included in the tile
In case buffer_size is provided, the origin will be calculated on an "original" tile, supposing that
there has been a buffer added to the input tile.
Args:
points (np.ndarray): numpy array with the tile points
tile_width (int, optional): Edge size of the square used for tiling. Defaults to 1000.
buffer_size (float, optional): Optional buffer around the tile. Defaults to 0.
Raises:
ValueError: Raise an error when the bounding box of the tile is not included in a tile
ValueError: Raise an error when the initial tile is smaller than the buffer (in this case, we cannot find the
origin (it can be either in the buffer or in the tile))
Returns:
Tuple[int, int]: (origin_x, origin_y) origin coordinates
"""
# Extract coordinates xmin, xmax, ymin and ymax of the original tile without buffer
x_min, y_min = np.min(points[:, :2], axis=0) + buffer_size
x_max, y_max = np.max(points[:, :2], axis=0) - buffer_size

# Calculate the tiles to which x, y bounds belong
tile_x_min = np.floor(x_min / tile_width)
tile_x_max = np.floor(x_max / tile_width) if x_max % tile_width != 0 else np.floor(x_max / tile_width) - 1
tile_y_min = np.ceil(y_min / tile_width) if y_min % tile_width != 0 else np.floor(y_min / tile_width) + 1
tile_y_max = np.ceil(y_max / tile_width)

if not (tile_x_max - tile_x_min) and not (tile_y_max - tile_y_min):
origin_x = tile_x_min * tile_width
origin_y = tile_y_max * tile_width
return origin_x, origin_y
else:
minx, miny = np.min(points[:, :2], axis=0) + buffer_size
maxx, maxy = np.max(points[:, :2], axis=0) - buffer_size

if maxx < minx or maxy < miny:
raise ValueError(
f"Min values (x={x_min} and y={y_min}) do not belong to the same theoretical tile as"
f"max values (x={x_max} and y={y_max})."
"Cannot find pointcloud origin as the pointcloud width or height is smaller than buffer width"
)

return infer_tile_origin(minx, maxx, miny, maxy, tile_width)
10 changes: 10 additions & 0 deletions test/test_las_info.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,16 @@ def test_get_bounds_from_quickinfo_metadata():
assert bounds == (INPUT_MINS[0], INPUT_MAXS[0], INPUT_MINS[1], INPUT_MAXS[1])


def test_get_bounds_using_header_info():
bounds = las_info.get_bounds_from_file_using_header_info(INPUT_FILE)
assert bounds == (INPUT_MINS[0], INPUT_MAXS[0], INPUT_MINS[1], INPUT_MAXS[1])


def test_get_tile_origin_using_header_info():
origin_x, origin_y = las_info.get_tile_origin_using_header_info(INPUT_FILE, tile_width=TILE_WIDTH)
assert (origin_x, origin_y) == (COORD_X * TILE_COORD_SCALE, COORD_Y * TILE_COORD_SCALE)


def test_get_epsg_from_quickinfo_metadata_ok():
metadata = las_info.las_info_metadata(INPUT_FILE)
assert las_info.get_epsg_from_header_info(metadata) == "2154"
Expand Down
48 changes: 37 additions & 11 deletions test/test_pcd_info.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,23 +12,41 @@


@pytest.mark.parametrize(
"input_points, expected_origin",
"minx, maxx, miny, maxy, expected_origin",
[
(np.array([[501, 501, 0], [999, 999, 0]]), (0, 1000)), # points in the second half
(np.array([[1, 1, 0], [400, 400, 0]]), (0, 1000)), # points in the frist half
(np.array([[500, 500, 0], [1000, 500, 0]]), (0, 1000)), # xmax on edge and xmin in the tile
(np.array([[0, 500, 0], [20, 500, 0]]), (0, 1000)), # xmin on edge and xmax in the tile
(np.array([[950, 500, 0], [1000, 500, 0]]), (0, 1000)), # xmax on edge and xmin in the tile
(np.array([[500, 980, 0], [500, 1000, 0]]), (0, 1000)), # ymax on edge and ymin in the tile
(np.array([[500, 0, 0], [500, 20, 0]]), (0, 1000)), # ymin on edge and ymax in the tile
(np.array([[0, 0, 0], [1000, 1000, 0]]), (0, 1000)), # points at each corner
(501, 999, 501, 999, (0, 1000)), # points in the second half
(1, 400, 1, 400, (0, 1000)), # points in the frist half
(500, 1000, 500, 500, (0, 1000)), # xmax on edge and xmin in the tile
(0, 20, 500, 500, (0, 1000)), # xmin on edge and xmax in the tile
(950, 1000, 500, 500, (0, 1000)), # xmax on edge and xmin in the tile
(500, 500, 980, 1000, (0, 1000)), # ymax on edge and ymin in the tile
(500, 500, 0, 20, (0, 1000)), # ymin on edge and ymax in the tile
(0, 1000, 0, 1000, (0, 1000)), # points at each corner
],
)
def test_get_pointcloud_origin_edge_cases(input_points, expected_origin):
origin_x, origin_y = pcd_info.get_pointcloud_origin_from_tile_width(points=input_points, tile_width=1000)
def test_infer_tile_origin_edge_cases(minx, maxx, miny, maxy, expected_origin):
origin_x, origin_y = pcd_info.infer_tile_origin(minx, maxx, miny, maxy, tile_width=1000)
assert (origin_x, origin_y) == expected_origin


@pytest.mark.parametrize(
"minx, maxx, miny, maxy",
[
(0, 20, -1, 20), # ymin slightly outside the tile
(-1, 20, 0, 20), # xmin slightly outside the tile
(280, 1000, 980, 1001), # ymax slightly outside the tile
(980, 1001, 980, 1000), # xmax slightly outside the tile
(-1, 1000, 0, 1000), # xmax on edge but xmin outside the tile
(0, 1000, 0, 1001), # ymin on edge but ymax outside the tile
(0, 1001, 0, 1000), # xmin on edge but xmax outside the tile
(0, 1000, -1, 1000), # ymax on edge but ymin outside the tile
],
)
def test_infer_tile_origin_edge_cases_fail(minx, maxx, miny, maxy):
with pytest.raises(ValueError):
pcd_info.infer_tile_origin(minx, maxx, miny, maxy, tile_width=1000)


@pytest.mark.parametrize(
"input_points",
[
Expand Down Expand Up @@ -59,3 +77,11 @@ def test_get_pointcloud_origin_on_file():
points=INPUT_POINTS, tile_width=10, buffer_size=20
)
assert (origin_x_2, origin_y_2) == (expected_origin[0] + 20, expected_origin[1] - 20)


def test_get_pointcloud_origin_fail_on_buffersize():
with pytest.raises(ValueError):
# Case when buffer size is bigger than the tile extremities (case not handled)
points = np.array([[0, 0, 0], [20, 20, 0]])
buffer_size = 30
pcd_info.get_pointcloud_origin_from_tile_width(points=points, tile_width=1000, buffer_size=buffer_size)

0 comments on commit 265ae80

Please sign in to comment.