-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_long.py
150 lines (128 loc) · 4.22 KB
/
finetune_long.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from utils import *
from transformers import(
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
AutoTokenizer,
AutoModelForSeq2SeqLM,
)
from tqdm import tqdm
from datasets import Dataset
# load tokenizer
tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
encoder_max_length = 6144
decoder_max_length = 512
batch_size = 1
def process_data_to_model_inputs(batch):
inputs = tokenizer(
batch["article"],
padding="max_length",
truncation=True,
max_length=encoder_max_length,
)
outputs = tokenizer(
batch["abstract"],
padding="max_length",
truncation=True,
max_length=decoder_max_length,
)
batch["input_ids"] = inputs.input_ids
batch["attention_mask"] = inputs.attention_mask
batch["global_attention_mask"] = len(batch["input_ids"]) * [
[0 for _ in range(len(batch["input_ids"][0]))]
]
batch["global_attention_mask"][0][0] = 1
batch["labels"] = outputs.input_ids
batch["labels"] = [
[-100 if token == tokenizer.pad_token_id else token for token in labels]
for labels in batch["labels"]
]
return batch
# construct training dataset
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default='PLOS')
parser.add_argument("--datatype", type=str, default="train")
args = parser.parse_args()
# training data
article_train, lay_sum_train, _ = load_task1_data(args)
train_dataset = {'article': article_train, 'abstract': lay_sum_train}
train_dataset = Dataset.from_dict(train_dataset)
# validation data
args.datatype = 'val'
article_val, lay_sum_val, _ = load_task1_data(args)
val_dataset = {'article': article_val, 'abstract': lay_sum_val}
val_dataset = Dataset.from_dict(val_dataset)
# --------------------test 300 nums of data-------------------
train_dataset = train_dataset.select(range(1000))
val_dataset = val_dataset.select(range(10))
# ------------------------------------------------------------
# map train data
train_dataset = train_dataset.map(
process_data_to_model_inputs,
batched = True,
batch_size = batch_size,
remove_columns=["article", "abstract"]
)
# map val data
val_dataset = val_dataset.map(
process_data_to_model_inputs,
batched = True,
batch_size = batch_size,
remove_columns=["article", "abstract"]
)
# the datasets should be converted into the PyTorch format
train_dataset.set_format(
type="torch",
columns=["input_ids", "attention_mask", "global_attention_mask", "labels"],
)
val_dataset.set_format(
type="torch",
columns=["input_ids", "attention_mask", "global_attention_mask", "labels"],
)
from rouge import Rouge
rouge = Rouge()
# the generation output, called pred.predictions as well as the gold label, called pred.label_ids.
def compute_metrics(pred):
labels_ids = pred.label_ids
pred_ids = pred.predictions
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
labels_ids[labels_ids == -100] = tokenizer.pad_token_id
label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)
rouge_output = rouge.get_scores(pred_str, label_str)[0]['rouge-2']
return {
"rouge2_precision": round(rouge_output['p'], 4),
"rouge2_recall": round(rouge_output['r'], 4),
"rouge2_fmeasure": round(rouge_output['f'], 4),
}
led = AutoModelForSeq2SeqLM.from_pretrained("allenai/led-base-16384", gradient_checkpointing=True, use_cache=False)
# set generate hyperparameters
led.config.num_beams = 2
led.config.max_length = 512
led.config.min_length = 100
led.config.length_penalty = 2.0
led.config.early_stopping = True
led.config.no_repeat_ngram_size = 3
# Training
model_name = 'long-2'
training_args = Seq2SeqTrainingArguments(
predict_with_generate=True,
evaluation_strategy="steps",
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
fp16=True,
output_dir=f"./{model_name}",
logging_steps=5,
eval_steps=10,
save_steps=10,
save_total_limit=2,
gradient_accumulation_steps=4,
num_train_epochs=1,
)
trainer = Seq2SeqTrainer(
model=led,
tokenizer=tokenizer,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=val_dataset,
)
trainer.train()