-
Notifications
You must be signed in to change notification settings - Fork 0
/
Box5_Figure1_plotting script.py
694 lines (517 loc) · 27.4 KB
/
Box5_Figure1_plotting script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
#!/usr/bin/env python
# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec
import cartopy.crs as ccrs
# requires the Iris package. See:
# https://scitools.org.uk/
# https://scitools-iris.readthedocs.io/en/stable/
#
import iris
import iris.plot as iplt
import os
import sys
print("The Python version is %s.%s.%s" % sys.version_info[:3])
print("The Iris version is ", iris.__version__)
'''
returns a numpy array of years from an Iris cube
'''
def get_yr(x):
yr2=x.coord('time')
y2=yr2.units.num2date(yr2.points)
y3=np.array(y2[0].year)
for ii in range(1,len(y2)):
y3=np.append(y3,y2[ii].year)
return y3
'''
simple smoother function
'''
def smooth(y, box_pts):
box = np.ones(box_pts)/box_pts
y_smooth = np.convolve(y, box, mode='same')
return y_smooth
# SSP colours:
col_hist = '#000000'
col_ssp119 = '#1E9684'
col_ssp126 = '#1D3354'
col_ssp245 = '#EADD3D'
col_ssp370 = '#F21111'
col_ssp585 = '#840B22'
col_ssp534 = '#9A6DC9'
# read CMIP6 conc-driven CO2 concentrations
#
y_hist, co2_hist = np.loadtxt('CMIP6_HIST_CO2.dat',skiprows=1).T
y_ssp, co2_ssp119, co2_ssp126, co2_ssp245, co2_ssp534, co2_ssp370, co2_ssp585 = np.loadtxt('CMIP6_SSP_CO2.dat',skiprows=1).T
y_ssp_2300, co2_ssp126_2300, co2_ssp534_2300, co2_ssp585_2300 = np.loadtxt('CMIP6_SSP2300_CO2.dat',skiprows=1).T
# "historical" data runs to 2014 and then SSPs from 2015 - this leaves a gap when plotted as separate lines
# so extend hist data to 2015 so there's no gap in plotting. first year of SSPs is invariant across scenarios to 5 sig.fig.
y_hist = np.append(y_hist, 2015)
co2_hist = np.append(co2_hist, co2_ssp245[0])
# read CMIP6 emission-driven CO2 concentrations
y_e,co2_e_mmm,co2_e_pc5,co2_e_pc95 = np.loadtxt('CMIP6_e-CO2.dat',skiprows=1).T
# create dictionaries for ease of selecting scenarios, colours etc
#
data = dict([('hist', co2_hist),('ssp585', co2_ssp585),
('ssp370', co2_ssp370),('ssp534', co2_ssp534),
('ssp245', co2_ssp245), ('ssp126', co2_ssp126),
('ssp119', co2_ssp119)])
yr_data = dict([('hist', y_hist), ('ssp119', y_ssp), ('ssp126', y_ssp),
('ssp245', y_ssp), ('ssp534', y_ssp), ('ssp370', y_ssp),
('ssp585', y_ssp)])
plot_data = dict([('hist', True), ('ssp119', True), ('ssp126', True),
('ssp245', True), ('ssp534', True), ('ssp370', True),
('ssp585', True)])
col = dict([('hist', col_hist), ('ssp119', col_ssp119), ('ssp126', col_ssp126),
('ssp245', col_ssp245), ('ssp534', col_ssp534), ('ssp370', col_ssp370),
('ssp585', col_ssp585)])
lab = dict([('hist', 'Historical'), ('ssp119', 'SSP1-1.9'), ('ssp126', 'SSP1-2.6'),
('ssp245', 'SSP2-4.5'), ('ssp534', 'SSP5-3.4OS'), ('ssp370', 'SSP3-7.0'),
('ssp585', 'SSP5-8.5')])
# CO2 concentrations from MAGICC emiss-driven runs for SSPs
# with grateful acknowledgement to Zebedee Nicholls
'''
MAGICC is maintained and developed by Malte Meinshausen (<[email protected]>),
Jared Lewis (<[email protected]>) and Zebedee Nicholls (<[email protected]>).
If you have any questions about MAGICC's output or would like to use it in a publication, please contact
Malte Meinshausen (<[email protected]>),
Jared Lewis (<[email protected]>) and Zebedee Nicholls (<[email protected]>).
The setup used to generate this data is described extensively in Cross-chapter Box 7.1 and is based on
Meinshausen et al. [2009](https://doi.org/10.1038/nature08017), [2011](https://doi.org/10.5194/acp-11-1417-2011) and [2020](https://doi.org/10.5194/gmd-13-3571-2020).
'''
co2_ssp119_magicc = iris.load('MAGICCv7.5.1_atmospheric-co2_esm-ssp119.nc')[0]
co2_ssp126_magicc = iris.load('MAGICCv7.5.1_atmospheric-co2_esm-ssp126.nc')[0]
co2_ssp245_magicc = iris.load('MAGICCv7.5.1_atmospheric-co2_esm-ssp245.nc')[0]
co2_ssp534_magicc = iris.load('MAGICCv7.5.1_atmospheric-co2_esm-ssp534-over.nc')[0]
co2_ssp370_magicc = iris.load('MAGICCv7.5.1_atmospheric-co2_esm-ssp370.nc')[0]
co2_ssp585_magicc = iris.load('MAGICCv7.5.1_atmospheric-co2_esm-ssp585.nc')[0]
# create array of years and multi-model mean, 5-95% ranges
#
magicc_yr = get_yr(co2_ssp126_magicc[0])
magicc_ssp126_mmm = np.mean(co2_ssp126_magicc.data,axis=0)
magicc_ssp126_pc95 = np.percentile(co2_ssp126_magicc.data,95,axis=0)
magicc_ssp126_pc5 = np.percentile(co2_ssp126_magicc.data,5,axis=0)
magicc_ssp119_mmm = np.mean(co2_ssp119_magicc.data,axis=0)
magicc_ssp119_pc95 = np.percentile(co2_ssp119_magicc.data,95,axis=0)
magicc_ssp119_pc5 = np.percentile(co2_ssp119_magicc.data,5,axis=0)
magicc_ssp245_mmm = np.mean(co2_ssp245_magicc.data,axis=0)
magicc_ssp245_pc95 = np.percentile(co2_ssp245_magicc.data,95,axis=0)
magicc_ssp245_pc5 = np.percentile(co2_ssp245_magicc.data,5,axis=0)
magicc_ssp534_mmm = np.mean(co2_ssp534_magicc.data,axis=0)
magicc_ssp534_pc95 = np.percentile(co2_ssp534_magicc.data,95,axis=0)
magicc_ssp534_pc5 = np.percentile(co2_ssp534_magicc.data,5,axis=0)
magicc_ssp370_mmm = np.mean(co2_ssp370_magicc.data,axis=0)
magicc_ssp370_pc95 = np.percentile(co2_ssp370_magicc.data,95,axis=0)
magicc_ssp370_pc5 = np.percentile(co2_ssp370_magicc.data,5,axis=0)
# multi-model, multi-scenario flux data from Liddicoat et al., 2020
# with grateful acknowledgement to Spencer Liddicoat
# https://journals.ametsoc.org/view/journals/clim/aop/JCLI-D-19-0991.1/JCLI-D-19-0991.1.xml
#
# read in calculated fossil-fuel emissions
# combine fgco2 (ocean flux) and nbp (land flux) into a total
# leading dimension is the year, so crop that off to just leave the flux data
fgco2_ssp119 = np.loadtxt('global_total_FGCO2_GtC_yr_HistoricalSsp119.txt',skiprows=1).T
nbp_ssp119 = np.loadtxt('global_total_NBP_GtC_yr_HistoricalSsp119.txt',skiprows=1).T
emiss_ssp119 = np.loadtxt('ffEmsHistoricalSsp119_GtCyr.txt',skiprows=1).T
flx_ssp119 = nbp_ssp119[1:] + fgco2_ssp119[1:]
emiss_ssp119 = emiss_ssp119[1:]
fgco2_ssp126 = np.loadtxt('global_total_FGCO2_GtC_yr_HistoricalSsp126.txt',skiprows=1).T
nbp_ssp126 = np.loadtxt('global_total_NBP_GtC_yr_HistoricalSsp126.txt',skiprows=1).T
flx_ssp126 = nbp_ssp126[1:] + fgco2_ssp126[1:]
emiss_ssp126 = np.loadtxt('ffEmsHistoricalSsp126_GtCyr.txt',skiprows=1).T
emiss_ssp126 = emiss_ssp126[1:]
fgco2_ssp245 = np.loadtxt('global_total_FGCO2_GtC_yr_HistoricalSsp245.txt',skiprows=1).T
nbp_ssp245 = np.loadtxt('global_total_NBP_GtC_yr_HistoricalSsp245.txt',skiprows=1).T
flx_ssp245 = nbp_ssp245[1:] + fgco2_ssp245[1:]
emiss_ssp245 = np.loadtxt('ffEmsHistoricalSsp245_GtCyr.txt',skiprows=1).T
emiss_ssp245 = emiss_ssp245[1:]
fgco2_ssp534 = np.loadtxt('global_total_FGCO2_GtC_yr_HistoricalSsp534os.txt',skiprows=1).T
nbp_ssp534 = np.loadtxt('global_total_NBP_GtC_yr_HistoricalSsp534os.txt',skiprows=1).T
flx_ssp534 = nbp_ssp534[1:] + fgco2_ssp534[1:]
emiss_ssp534 = np.loadtxt('ffEmsHistoricalSsp534os_GtCyr.txt',skiprows=1).T
emiss_ssp534 = emiss_ssp534[1:]
fgco2_ssp370 = np.loadtxt('global_total_FGCO2_GtC_yr_HistoricalSsp370.txt',skiprows=1).T
nbp_ssp370 = np.loadtxt('global_total_NBP_GtC_yr_HistoricalSsp370.txt',skiprows=1).T
flx_ssp370 = nbp_ssp370[1:] + fgco2_ssp370[1:]
emiss_ssp370 = np.loadtxt('ffEmsHistoricalSsp370_GtCyr.txt',skiprows=1).T
emiss_ssp370 = emiss_ssp370[1:]
fgco2_ssp585 = np.loadtxt('global_total_FGCO2_GtC_yr_HistoricalSsp585.txt',skiprows=1).T
nbp_ssp585 = np.loadtxt('global_total_NBP_GtC_yr_HistoricalSsp585.txt',skiprows=1).T
flx_ssp585 = nbp_ssp585[1:] + fgco2_ssp585[1:]
emiss_ssp585 = np.loadtxt('ffEmsHistoricalSsp585_GtCyr.txt',skiprows=1).T
emiss_ssp585 = emiss_ssp585[1:]
y = nbp_ssp585[0]
# insert leading 0 as emissions data runs from 1851
emiss_ssp119 = np.insert(emiss_ssp119, 0, 0, axis=1)
emiss_ssp126 = np.insert(emiss_ssp126, 0, 0, axis=1)
emiss_ssp245 = np.insert(emiss_ssp245, 0, 0, axis=1)
emiss_ssp534 = np.insert(emiss_ssp534, 0, 0, axis=1)
emiss_ssp370 = np.insert(emiss_ssp370, 0, 0, axis=1)
emiss_ssp585 = np.insert(emiss_ssp585, 0, 0, axis=1)
flx_mmm = dict([('ssp119', np.mean(flx_ssp119,axis=0)), ('ssp126', np.mean(flx_ssp126,axis=0)),
('ssp245', np.mean(flx_ssp245,axis=0)), ('ssp534', np.mean(flx_ssp534,axis=0)), ('ssp370', np.mean(flx_ssp370,axis=0)),
('ssp585', np.mean(flx_ssp585,axis=0))])
flx_pc5 = dict([('ssp119', np.percentile(flx_ssp119,5,axis=0)), ('ssp126', np.percentile(flx_ssp126,5,axis=0)),
('ssp245', np.percentile(flx_ssp245,5,axis=0)), ('ssp534', np.percentile(flx_ssp534,5,axis=0)), ('ssp370', np.percentile(flx_ssp370,5,axis=0)),
('ssp585', np.percentile(flx_ssp585,5,axis=0))])
flx_pc95 = dict([('ssp119', np.percentile(flx_ssp119,95,axis=0)), ('ssp126', np.percentile(flx_ssp126,95,axis=0)),
('ssp245', np.percentile(flx_ssp245,95,axis=0)), ('ssp534', np.percentile(flx_ssp534,95,axis=0)), ('ssp370', np.percentile(flx_ssp370,95,axis=0)),
('ssp585', np.percentile(flx_ssp585,95,axis=0))])
# get data to 2300 from 4 ESMs (CanESM5, IPSL, UKESM, CESM2):
year,c5_ssp126,c5_ssp534,c5_ssp585 = np.loadtxt('CanESM5_nbp.dat').T
year,i6_ssp126,i6_ssp534,i6_ssp585 = np.loadtxt('IPSL-CM6A-LR_nbp.dat').T
year,uk_ssp126,uk_ssp534,uk_ssp585 = np.loadtxt('UKESM1-0-LL_nbp.dat').T
year,ce2_ssp126,ce2_ssp534,ce2_ssp585 = np.loadtxt('CESM2-WACCM_nbp.dat').T
year,c5_ocn_ssp126,c5_ocn_ssp534,c5_ocn_ssp585 = np.loadtxt('CanESM5_fgco2.dat').T
year,i6_ocn_ssp126,i6_ocn_ssp534,i6_ocn_ssp585 = np.loadtxt('IPSL-CM6A-LR_fgco2.dat').T
year,uk_ocn_ssp126,uk_ocn_ssp534,uk_ocn_ssp585 = np.loadtxt('UKESM1-0-LL_fgco2.dat').T
year,ce2_ocn_ssp126,ce2_ocn_ssp534,ce2_ocn_ssp585 = np.loadtxt('CESM2-WACCM_fgco2.dat').T
flx_2300_ssp126 = [
[c5_ssp126 + c5_ocn_ssp126],
[i6_ssp126 + i6_ocn_ssp126],
[uk_ssp126 + uk_ocn_ssp126],
[ce2_ssp126 + ce2_ocn_ssp126]
]
flx_2300_ssp534 = [
[c5_ssp534 + c5_ocn_ssp534],
[i6_ssp534 + i6_ocn_ssp534],
[uk_ssp534 + uk_ocn_ssp534],
[ce2_ssp534 + ce2_ocn_ssp534]
]
flx_2300_ssp585 = [
[c5_ssp585 + c5_ocn_ssp585],
[i6_ssp585 + i6_ocn_ssp585],
[uk_ssp585 + uk_ocn_ssp585],
[ce2_ssp585 + ce2_ocn_ssp585]
]
data_2300 = dict([('ssp126', flx_2300_ssp126),
('ssp534', flx_2300_ssp534),
('ssp585', flx_2300_ssp585)])
# calculate multi-model mean and 5-95%
#
ssp126_2300_mmm = np.mean(flx_2300_ssp126,axis=0)[0]
ssp126_2300_pc95 = np.percentile(flx_2300_ssp126,95,axis=0)[0]
ssp126_2300_pc5 = np.percentile(flx_2300_ssp126,5,axis=0)[0]
ssp534_2300_mmm = np.mean(flx_2300_ssp534,axis=0)[0]
ssp534_2300_pc95 = np.percentile(flx_2300_ssp534,95,axis=0)[0]
ssp534_2300_pc5 = np.percentile(flx_2300_ssp534,5,axis=0)[0]
ssp585_2300_mmm = np.mean(flx_2300_ssp585,axis=0)[0]
ssp585_2300_pc95 = np.percentile(flx_2300_ssp585,95,axis=0)[0]
ssp585_2300_pc5 = np.percentile(flx_2300_ssp585,5,axis=0)[0]
# calculate cumulative fluxes from annuals
#
flx_cum_ssp119 = np.cumsum(flx_ssp119, axis=1)
flx_cum_ssp126 = np.cumsum(flx_ssp126, axis=1)
flx_cum_ssp245 = np.cumsum(flx_ssp245, axis=1)
flx_cum_ssp534 = np.cumsum(flx_ssp534, axis=1)
flx_cum_ssp370 = np.cumsum(flx_ssp370, axis=1)
flx_cum_ssp585 = np.cumsum(flx_ssp585, axis=1)
flx_cum_mmm = dict([('ssp119', np.mean(flx_cum_ssp119,axis=0)), ('ssp126', np.mean(flx_cum_ssp126,axis=0)),
('ssp245', np.mean(flx_cum_ssp245,axis=0)), ('ssp534', np.mean(flx_cum_ssp534,axis=0)), ('ssp370', np.mean(flx_cum_ssp370,axis=0)),
('ssp585', np.mean(flx_cum_ssp585,axis=0))])
flx_cum_pc5 = dict([('ssp119', np.percentile(flx_cum_ssp119,5,axis=0)), ('ssp126', np.percentile(flx_cum_ssp126,5,axis=0)),
('ssp245', np.percentile(flx_cum_ssp245,5,axis=0)), ('ssp534', np.percentile(flx_cum_ssp534,5,axis=0)), ('ssp370', np.percentile(flx_cum_ssp370,5,axis=0)),
('ssp585', np.percentile(flx_cum_ssp585,5,axis=0))])
flx_cum_pc95 = dict([('ssp119', np.percentile(flx_cum_ssp119,95,axis=0)), ('ssp126', np.percentile(flx_cum_ssp126,95,axis=0)),
('ssp245', np.percentile(flx_cum_ssp245,95,axis=0)), ('ssp534', np.percentile(flx_cum_ssp534,95,axis=0)), ('ssp370', np.percentile(flx_cum_ssp370,95,axis=0)),
('ssp585', np.percentile(flx_cum_ssp585,95,axis=0))])
# to calculate sink fractions need to account for land use
# so add land-use to top and bottom of the fraction so instead of nbp/fossil, get nep/total-emiss
#
# use the scenarios data
# data from: https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=50
'''
Data is from the SSP scenarios: Riahi, K. et al., 2017, DOI:110.1016/j.gloenvcha.2016.05.009
For more details see:
SSP1: van Vuuren, D.P. et al., 2017, DOI:10.1016/j.gloenvcha.2016.05.008
SSP2: Fricko, O. et al., 2017, DOI:10.1016/j.gloenvcha.2016.06.004
SSP3: Fujimori, S. et al., 2017, DOI:10.1016/j.gloenvcha.2016.06.009
SSP5: Kriegler, E. et al., 2017, DOI:10.1016/j.gloenvcha.2016.05.015
Land-use: Popp, A. et al, 2017, DOI:10.1016/j.gloenvcha.2016.2016.10.002
'''
ssp370_LU = [0.959301818, 1.056843235, 0.959464809, 0.862338354, 0.78794353, 0.857603663, 0.831412897, 0.7754469, 0.699528109, 0.724396664]
ssp119_LU = [0.959301818, 0.866072041, 0.101543745, 0.377358673, -0.222296673, -0.406504146, -0.499712372, -0.578721769, -0.606262542, -0.649481884]
ssp126_LU = [0.959301818, 0.866817094, 0.05128979, -0.105763342, -0.479624451, -0.705440587, -0.704718662, -0.664609591, -0.568549256, -0.790646116]
ssp245_LU = [0.959301818, 0.888927545, 0.785832615, 0.590266856, 0.136613758, -0.419976886, -0.603051387, -0.926548596, -1.177396938, -1.309111901]
ssp585_LU = [0.959301818, 1.077187122, 1.240056188, 0.937018695, 0.55990575, 0.038017088, -0.062708387, -0.040323327, -0.135100418, -0.417359264]
ssp534_LU = [0.959301818, 1.077263489, 1.240992571, 0.936726687, 0.75137482, 1.301441248, 0.68207744, 0.246490909, 0.015850909, -0.218427273]
y_LU = [2015,2020,2030,2040,2050,2060,2070,2080,2090,2100]
# historical land-use data created by Julia Pongratz, and available here:
# http://c4mip.net/cmip6-experiments
# c4mip.net/fileadmin/user_upload/c4mip/CMIP6_C4MIP_landuse_emissions.nc.gz
LU_hist = iris.load('/data/users/hadcn/CMIP6_C4MIP_landuse_emissions.nc')[0]
# account for different units and interpolate to annual timesteps
#
y_lu = np.concatenate([np.arange(1850,2015), np.arange(2015,2101,1)])
ssp370_lu = np.concatenate([LU_hist.data*1e-12, np.interp(np.arange(2015,2101,1), y_LU, ssp370_LU)])
ssp119_lu = np.concatenate([LU_hist.data*1e-12, np.interp(np.arange(2015,2101,1), y_LU, ssp119_LU)])
ssp126_lu = np.concatenate([LU_hist.data*1e-12, np.interp(np.arange(2015,2101,1), y_LU, ssp126_LU)])
ssp245_lu = np.concatenate([LU_hist.data*1e-12, np.interp(np.arange(2015,2101,1), y_LU, ssp245_LU)])
ssp585_lu = np.concatenate([LU_hist.data*1e-12, np.interp(np.arange(2015,2101,1), y_LU, ssp585_LU)])
ssp534_lu = np.concatenate([LU_hist.data*1e-12, np.interp(np.arange(2015,2101,1), y_LU, ssp534_LU)])
# calculate sink-fraction with LU included
#
flxnep_ssp370 = ssp370_lu + flx_ssp370
flxnep_cum_ssp370 = np.cumsum(flxnep_ssp370, axis=1)
emisstot_cum_ssp370 = np.cumsum(emiss_ssp370 + ssp370_lu, axis=1)
sink_fractot_ssp370 = flxnep_cum_ssp370 / emisstot_cum_ssp370
flxnep_ssp119 = ssp119_lu + flx_ssp119
flxnep_cum_ssp119 = np.cumsum(flxnep_ssp119, axis=1)
emisstot_cum_ssp119 = np.cumsum(emiss_ssp119 + ssp119_lu, axis=1)
sink_fractot_ssp119 = flxnep_cum_ssp119 / emisstot_cum_ssp119
flxnep_ssp126 = ssp126_lu + flx_ssp126
flxnep_cum_ssp126 = np.cumsum(flxnep_ssp126, axis=1)
emisstot_cum_ssp126 = np.cumsum(emiss_ssp126 + ssp126_lu, axis=1)
sink_fractot_ssp126 = flxnep_cum_ssp126 / emisstot_cum_ssp126
flxnep_ssp245 = ssp245_lu + flx_ssp245
flxnep_cum_ssp245 = np.cumsum(flxnep_ssp245, axis=1)
emisstot_cum_ssp245 = np.cumsum(emiss_ssp245 + ssp245_lu, axis=1)
sink_fractot_ssp245 = flxnep_cum_ssp245 / emisstot_cum_ssp245
flxnep_ssp585 = ssp585_lu + flx_ssp585
flxnep_cum_ssp585 = np.cumsum(flxnep_ssp585, axis=1)
emisstot_cum_ssp585 = np.cumsum(emiss_ssp585 + ssp585_lu, axis=1)
sink_fractot_ssp585 = flxnep_cum_ssp585 / emisstot_cum_ssp585
flxnep_ssp534 = ssp534_lu + flx_ssp534
flxnep_cum_ssp534 = np.cumsum(flxnep_ssp534, axis=1)
emisstot_cum_ssp534 = np.cumsum(emiss_ssp534 + ssp534_lu, axis=1)
sink_fractot_ssp534 = flxnep_cum_ssp534 / emisstot_cum_ssp534
sink_fractot_mmm = dict([('ssp119', np.mean(sink_fractot_ssp119,axis=0)), ('ssp126', np.mean(sink_fractot_ssp126,axis=0)),
('ssp245', np.mean(sink_fractot_ssp245,axis=0)), ('ssp370', np.mean(sink_fractot_ssp370,axis=0)),
('ssp534', np.mean(sink_fractot_ssp534,axis=0)), ('ssp585', np.mean(sink_fractot_ssp585,axis=0))])
sink_fractot_pc5 = dict([('ssp119', np.percentile(sink_fractot_ssp119,5,axis=0)), ('ssp126', np.percentile(sink_fractot_ssp126,5,axis=0)),
('ssp245', np.percentile(sink_fractot_ssp245,5,axis=0)), ('ssp370', np.percentile(sink_fractot_ssp370,5,axis=0)),
('ssp534', np.percentile(sink_fractot_ssp534,5,axis=0)), ('ssp585', np.percentile(sink_fractot_ssp585,5,axis=0))])
sink_fractot_pc95 = dict([('ssp119', np.percentile(sink_fractot_ssp119,95,axis=0)), ('ssp126', np.percentile(sink_fractot_ssp126,95,axis=0)),
('ssp245', np.percentile(sink_fractot_ssp245,95,axis=0)), ('ssp370', np.percentile(sink_fractot_ssp370,95,axis=0)),
('ssp534', np.percentile(sink_fractot_ssp534,95,axis=0)), ('ssp585', np.percentile(sink_fractot_ssp585,95,axis=0))])
# beta / gamma maps
# with grateful acknowledgement to Charlie Koven, data used in chpater 5, figure 5.27
#
'''
for data and notebook, see:
https://github.com/ckoven/cmip6_beta_gamma_maps/blob/master/cmip6_beta_gamma_maps.ipynb
doi 10.5281/zenodo.6039693
'''
cubes = iris.load('carbon_feedback_parameters.nc')
beta = cubes.extract('beta_ensmean')[0]
gamma = cubes.extract('gamma_ensmean')[0]
beta_agr = cubes.extract('beta_fraction_sign_agreement')[0]
gamma_agr = cubes.extract('gamma_fraction_sign_agreement')[0]
zon_beta_land_av = cubes.extract('beta_land_zonalmean_ensmean')[0]
zon_beta_ocn_av = cubes.extract('beta_ocean_zonalmean_ensmean')[0]
zon_gamma_land_av = cubes.extract('gamma_land_zonalmean_ensmean')[0]
zon_gamma_ocn_av = cubes.extract('gamma_ocean_zonalmean_ensmean')[0]
zon_beta_land_std = cubes.extract('beta_land_zonalmean_ensstd')[0]
zon_beta_ocn_std = cubes.extract('beta_ocean_zonalmean_ensstd')[0]
zon_gamma_land_std = cubes.extract('gamma_land_zonalmean_ensstd')[0]
zon_gamma_ocn_std = cubes.extract('gamma_ocean_zonalmean_ensstd')[0]
for c in [beta, gamma, beta_agr, gamma_agr]:
c.coord('lat').rename('latitude')
c.coord('lon').rename('longitude')
beta_levs = np.linspace(-.02,.02,16)
beta_cmap = plt.cm.get_cmap('PiYG')
gamma_levs = np.linspace(-1.2,1.2,16)
gamma_cmap = plt.cm.get_cmap('PiYG')
lat = zon_beta_land_av.coord('lat').points
# plot the figure
#
fig = plt.figure(figsize=(20,30))
spec_1 = gridspec.GridSpec(ncols=4, nrows=4, width_ratios = [1,4,4,1], wspace=0.01)
spec_2 = gridspec.GridSpec(ncols=2, nrows=4, width_ratios = [2,1], wspace=0)
spec_1b = gridspec.GridSpec(ncols=4, nrows=4, width_ratios = [1,2,2,1])
# set all lines to True, but can be configured to select subset
plot_data = dict([('hist', True), ('ssp119', True), ('ssp126', True),
('ssp245', True), ('ssp534', True), ('ssp370', True),
('ssp585', True)])
# top row
# grid spec positions:
ax1 = fig.add_axes([0.11, .745, .08, .11])
ax4 = fig.add_axes([0.81, .745, .08, .11])
# second row
ax5 = fig.add_subplot(spec_2[1,0])
# third row
ax6 = fig.add_subplot(spec_2[2,0])
ax7 = fig.add_subplot(spec_2[2,1])
#fourth row
ax8 = fig.add_subplot(spec_2[3,0])
ax8b = fig.add_subplot(spec_2[3,1])
# hide various axes, set ticks etc
axes=[ax1,ax4,ax5,ax6,ax7,ax8,ax8b]
for ax in axes:
ax.tick_params(labelsize=15)
for z in ['top', 'right']:
ax.spines[z].set_visible(False)
for ax in [ax4,ax7,ax8b]:
ax.tick_params(labelsize=15)
for z in ['left']:
ax.spines[z].set_visible(False)
ax4.spines['right'].set_visible(True)
ax8b.spines['bottom'].set_visible(False)
ax8b.axes.get_yaxis().set_visible(False)
ax8b.axes.get_xaxis().set_visible(False)
ax7.axes.get_yaxis().set_visible(False)
# manual intervention on ticks:
ax1.set_xticks([0,.1,.2])
ax1.set_yticks(np.arange(-90,120,30))
ax4.set_xticks([-20,-10,0,10])
ax4.set_yticks(np.arange(-90,120,30))
ax6.set_yticks(np.arange(-4,16,2))
ax7.set_xticks([2150,2200,2250,2300])
######
#
# panels a-d
#
ax1.plot(zon_beta_land_av.data, lat, 'g')
ax1.plot(zon_beta_ocn_av.data, lat, 'b')
ax1.fill_betweenx(lat,zon_beta_land_av.data-zon_beta_land_std.data, zon_beta_land_av.data+zon_beta_land_std.data,
facecolor='g',alpha=0.2)
ax1.fill_betweenx(lat,zon_beta_ocn_av.data-zon_beta_ocn_std.data, zon_beta_ocn_av.data+zon_beta_ocn_std.data,
facecolor='b',alpha=0.2)
ax1.set_xlim(-.02,.3)
ax1.set_ylim(-95,95)
ax1.set_title(' (a, b) Carbon uptake response to CO$_2$', fontsize=20)
ax1.set_xlabel('10$^6$ kg C m$^{-1}$ ppm$^{-1}$', fontsize=16)
ax1.set_ylabel('latitude', fontsize=16)
ax1.text(.15,-30,'Land', color='g', fontsize=14)
ax1.text(.15,-50,'Ocean', color='b', fontsize=14)
ax4.plot(zon_gamma_land_av.data, lat, 'g')
ax4.plot(zon_gamma_ocn_av.data, lat, 'b')
ax4.fill_betweenx(lat,zon_gamma_land_av.data-zon_gamma_land_std.data, zon_gamma_land_av.data+zon_gamma_land_std.data,
facecolor='g',alpha=0.2)
ax4.fill_betweenx(lat,zon_gamma_ocn_av.data-zon_gamma_ocn_std.data, zon_gamma_ocn_av.data+zon_gamma_ocn_std.data,
facecolor='b',alpha=0.2)
ax4.yaxis.tick_right()
ax4.set_ylim(-95,95)
ax4.set_xlabel('10$^6$ kg C m$^{-1}$ $^o$C$^{-1}$', fontsize=16)
for i in np.arange(-75,100,25):
ax1.hlines(i, -0.01,0.3, 'gray', alpha=0.2)
ax4.hlines(i, -20,10, 'gray', alpha=0.2)
ax2 = fig.add_subplot(spec_1[0,1], projection = ccrs.Robinson(central_longitude= 0))
coldata = iplt.contourf(beta, beta_levs, cmap = beta_cmap, extend='both')
ax_map = plt.gca()
contour_stipple_lo = iplt.contourf(beta_agr,colors='None',levels=[0,.8],hatches=['////'])
ax_map.coastlines()
ax_map.set_xlim(ax_map.projection.x_limits)
ax_map.set_ylim(ax_map.projection.y_limits)
bar_pos = [0.23, 0.725, 0.26, 0.01] # [left,bottom,width,height]
bar_orientation = "horizontal" # or "vertical" or "none" (to skip)
bar_ticklen = 0
bar_ticklabs = [-.02,-.01,0,.01,.02]
bar_label = u"kg C m$^{-2}$ ppm$^{-1}$"
bar2_axes = fig.add_axes(bar_pos)
bar2 = fig.colorbar(coldata, cax=bar2_axes,
orientation=bar_orientation,
drawedges=False, extend='max')
bar2.ax.tick_params(length=bar_ticklen)
bar2.ax.tick_params(labelsize=15)
bar2.set_ticks(bar_ticklabs)
bar2.set_label(bar_label, fontsize=16)
ax_map.set_xlim(ax_map.projection.x_limits)
ax_map.set_ylim(ax_map.projection.y_limits)
ax3 = fig.add_subplot(spec_1[0,2], projection = ccrs.Robinson(central_longitude= 0))
coldata = iplt.contourf(gamma, gamma_levs, cmap = gamma_cmap, extend='both')
ax_map = plt.gca()
contour_stipple_lo = iplt.contourf(gamma_agr,colors='None',levels=[0,.8],hatches=['////'])
ax_map.coastlines()
ax_map.set_title('(c,d) Carbon uptake response to climate warming', fontsize=20)
bar_label = u"kg C m$^{-2}$ $^o$C$^{-1}$"
bar_pos = [0.54, 0.725, 0.26, 0.01] # [left,bottom,width,height]
bar3_axes = fig.add_axes(bar_pos)
bar_ticklabs = [-1, -.5, 0, .5, 1]
bar3 = fig.colorbar(coldata, cax=bar3_axes,
orientation=bar_orientation,
drawedges=False, extend='min')
bar3.ax.tick_params(length=bar_ticklen)
bar3.ax.tick_params(labelsize=15)
bar3.set_ticks(bar_ticklabs)
bar3.set_label(bar_label, fontsize=16)
######
#
# panel e
#
xr = [1990,2100]
for i in np.arange(300,1200,100):
ax5.hlines(i, xr[0], xr[1], 'gray', alpha=0.2)
for i in data:
if plot_data[i]: ax5.plot(yr_data[i], data[i], color=col[i], label=lab[i])
ax5.fill_between(y_e,co2_e_pc5,co2_e_pc95, facecolor=col_ssp585,alpha=0.1, label='emiss-driven')
ax5.fill_between(magicc_yr, magicc_ssp126_pc5, magicc_ssp126_pc95, facecolor=col_ssp126,alpha=0.1)
ax5.fill_between(magicc_yr, magicc_ssp119_pc5, magicc_ssp119_pc95, facecolor=col_ssp119,alpha=0.1)
ax5.fill_between(magicc_yr, magicc_ssp245_pc5, magicc_ssp245_pc95, facecolor=col_ssp245,alpha=0.1)
ax5.fill_between(magicc_yr, magicc_ssp534_pc5, magicc_ssp534_pc95, facecolor=col_ssp534,alpha=0.1)
ax5.fill_between(magicc_yr, magicc_ssp370_pc5, magicc_ssp370_pc95, facecolor=col_ssp370,alpha=0.1)
ax5.legend(fontsize=18, loc='upper left', bbox_to_anchor=(1.1,1))
ax5.set_title('(e) CO$_2$ concentration (ppm)', fontsize=24, loc='left')
ax5.set_xlim(xr[0], xr[1])
ax5.set_ylim(300,1200)
ax5.text(1995,1110,'10', fontsize=18, color=col['ssp585'])
for axes in [ax5,ax6,ax7,ax8]:
axes.tick_params(labelsize=18)
######
#
# panel f
#
xr2300 = [2100,2300]
for i in flx_mmm:
if plot_data[i]:
ax6.plot(y, flx_mmm[i], color=col[i], label=lab[i])
ax6.fill_between(y, flx_pc5['ssp126'], flx_pc95['ssp126'], facecolor=col['ssp126'], alpha=0.1)
ax6.fill_between(y, flx_pc5['ssp370'], flx_pc95['ssp370'], facecolor=col['ssp370'], alpha=0.1)
for i in np.arange(-4,16,2):
ax6.hlines(i, xr[0],xr[1], 'gray', alpha=0.2)
ax7.hlines(i, xr2300[0],xr2300[1], 'gray', alpha=0.2)
ax6.hlines(0, xr[0],xr[1], 'k', alpha=0.5)
ax7.hlines(0, xr2300[0],xr2300[1], 'k', alpha=0.5)
ax7.vlines(2100, -10,20, 'k', linestyle='dashed')
ax6.set_ylim(-5,15)
ax7.set_ylim(-5,15)
ax6.set_xlim(xr[0], xr[1])
ax7.set_xlim(xr2300[0], xr2300[1])
ax7.fill_between(year, smooth(ssp126_2300_pc5,5), smooth(ssp126_2300_pc95,5), facecolor=col['ssp126'], alpha=.1)
ax7.plot(year, ssp126_2300_mmm, col['ssp126'])
ax7.plot(year, ssp534_2300_mmm, col['ssp534'])
ax7.plot(year, ssp585_2300_mmm, col['ssp585'])
ax6.set_title('(f) Net land and ocean carbon fluxes (PgC yr$^{-1}$)', fontsize=24, loc='left')
# print number of models used for each scenario/time period
ax6.text(1995,12.5,'5', fontsize=18, color=col['ssp119'])
ax6.text(1998,12.5,'9', fontsize=18, color=col['ssp126'])
ax6.text(2001,12.5,'9', fontsize=18, color=col['ssp245'])
ax6.text(2004,12.5,'9', fontsize=18, color=col['ssp370'])
ax6.text(2007,12.5,'4', fontsize=18, color=col['ssp534'])
ax6.text(2010,12.5,'9', fontsize=18, color=col['ssp585'])
ax7.text(2120,12.5,'simulations extended to 2300 for:', fontsize=16)
ax7.text(2240,10.5,'SSP5-8.5 [4]', fontsize=18, color=col['ssp585'])
ax7.text(2240,9,'SSP5-3.4-OS [4]', fontsize=18, color=col['ssp534'])
ax7.text(2240,7.5,'SSP1-2.6 [4]', fontsize=18, color=col['ssp126'])
######
#
# panel g
#
for i in sink_fractot_mmm:
if plot_data[i]:
ax8.plot(y, sink_fractot_mmm[i], color=col[i], label=lab[i])
ax8.fill_between(y, sink_fractot_pc5['ssp126'], sink_fractot_pc95['ssp126'], facecolor=col['ssp126'], alpha=0.1)
ax8.fill_between(y, sink_fractot_pc5['ssp370'], sink_fractot_pc95['ssp370'], facecolor=col['ssp370'], alpha=0.1)
for i in np.arange(0,1,.1):
ax8.hlines(i, xr[0],xr[1], 'gray', alpha=0.2)
ax8.hlines(0, xr[0],xr[1], 'k', alpha=0.5)
ax8.set_xlim(xr[0],xr[1])
ax8.set_ylim(0.25,.75)
ax8.set_title('(g) Sink fraction', fontsize=24, loc='left')
ax8.set_xlabel('Year', fontsize=24)
ax8.text(1995,.31,'5', fontsize=18, color=col['ssp119'])
ax8.text(1998,.31,'9', fontsize=18, color=col['ssp126'])
ax8.text(2001,.31,'9', fontsize=18, color=col['ssp245'])
ax8.text(2004,.31,'9', fontsize=18, color=col['ssp370'])
ax8.text(2007,.31,'4', fontsize=18, color=col['ssp534'])
ax8.text(2010,.31,'9', fontsize=18, color=col['ssp585'])
ax8b.plot([0])
ax8b.set_xlim(0,10)
ax8b.set_ylim(0,10)
ax8b.arrow(1,9,0,-6,color='gray', head_width=.4)
ax8b.text(2,7.8,'At higher CO$_2$ concentrations,', fontsize=18)
ax8b.text(2,7,'land and ocean carbon stores', fontsize=18)
ax8b.text(2,6.2,'take-up a reduced fraction', fontsize=18)
ax8b.text(2,5.4,'of our emissions,', fontsize=18)
ax8b.text(2,4.6,'despite growing larger', fontsize=18)
plt.savefig('TS.5.png')