-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathKafka_live.py
205 lines (185 loc) · 10.7 KB
/
Kafka_live.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import collections
import kafka_helper
import udp_functions
import plot_func
import matplotlib.pyplot as plt
import threading
import queue
plt.style.use('ggplot')
# ch_list = [0,1,2,3]
ch_list = list(range(0,24,1))
graph_list = [1,1,1,1,1,1]
PACKET_COUNT = 0, 0, 0, 0, 0
stop_threads = False
ProcDataQueue = queue.Queue(maxsize=0)
histogrammed_data_list = [{'position': collections.Counter(), 'PulseHeight': collections.Counter(),
'StartSig': collections.Counter(),
'Misplace': collections.Counter(), 'MaxSlope': collections.Counter(),
'AreaData': collections.Counter()} for i in ch_list]# range(24)]
kafka_dict_list = [{'position': collections.Counter(), 'PulseHeight': collections.Counter(),
'StartSig': collections.Counter(),
'Misplace': collections.Counter(), 'MaxSlope': collections.Counter(),
'AreaData': collections.Counter()} for i in range(24)]
if sum(graph_list) > 3:
number_of_cols = 3
number_of_rows = 2
else:
number_of_cols = sum(graph_list)
number_of_rows = 1
figure, axes = plt.subplots(nrows=number_of_rows, ncols=number_of_cols)
# ######################START THE UDP KAFKA THREADS#########################################
thread_list = udp_functions.thread_ch_list(ch_list)
for i in thread_list:
udp_thread = threading.Thread(target=udp_functions.kafka_slim_single_thread_udp_receiver,
args=((lambda: stop_threads), PACKET_COUNT[i], i))
udp_thread.start()
def data_split_live_dict_v4(kafka_data):
HEADER_STRING = "ffffffffffffffff0"
END_HEADER = "efffffffffffffff0"
position = [[] for i in range(24)]
PulseHeight = [[] for i in range(24)]
StartSig = [[] for i in range(24)]
Misplace = [[] for i in range(24)]
MaxSlope = [[] for i in range(24)]
AreaData = [[] for i in range(24)]
kafka_dict_list = [{'position': collections.Counter(), 'PulseHeight': collections.Counter(),
'StartSig': collections.Counter(),
'Misplace': collections.Counter(), 'MaxSlope': collections.Counter(),
'AreaData': collections.Counter()} for i in range(24)]
#format data
packet_data_list = kafka_data.get("packet").replace(HEADER_STRING, "\n" + HEADER_STRING) \
.replace(END_HEADER, "\n" + END_HEADER).splitlines()
channel_offset = (int(kafka_data.get("packet_info")[11:]) - 1) * 6
list_length = len(packet_data_list)
for j in range(1, list_length):
line = packet_data_list[j][128:]
kafka_data_length = (len(line))
for i in range(0, kafka_data_length, 32): # return 32 character chunks
channel = int(((bin(int('1' + (line[i + 11:i + 13]), 16))[3:])[3:6]), 2) + channel_offset
position[channel].append(int(line[i + 29:i + 32], 16)/8)
PulseHeight[channel].append(int(line[i + 26:i + 29], 16)/8)
StartSig[channel].append(int(line[i + 23:i + 26], 16))
Misplace[channel].append(int(line[i + 20:i + 23], 16))
MaxSlope[channel].append(int(line[i + 17:i + 20], 16))
AreaData[channel].append(int(line[i + 14:i + 17], 16))
for i in range(0, 24, 1):
if len(position[i]):
kafka_dict_list[i]['position'] = collections.Counter(position[i])
kafka_dict_list[i]['PulseHeight'] = collections.Counter(PulseHeight[i])
kafka_dict_list[i]['StartSig'] = collections.Counter(StartSig[i])
kafka_dict_list[i]['Misplace'] = collections.Counter(Misplace[i])
kafka_dict_list[i]['MaxSlope'] = collections.Counter(MaxSlope[i])
kafka_dict_list[i]['AreaData'] = collections.Counter(AreaData[i])
ProcDataQueue.put(kafka_dict_list)
kafka_helper.do_func_on_live_data(data_split_live_dict_v4)
plt.ion()
plt.show()
while True:
while ProcDataQueue.qsize() > 0: # or (ProcDataQueue_list[1].qsize() > 0):
print(ProcDataQueue.qsize())
kafka_dict_deque = ProcDataQueue.get()
for i in ch_list:
if len(kafka_dict_deque[i]['position']):
histogrammed_data_list[i]['position'] = collections.Counter(histogrammed_data_list[i]['position']) + \
collections.Counter(kafka_dict_deque[i]['position'])
histogrammed_data_list[i]['PulseHeight'] = collections.Counter(histogrammed_data_list[i]['PulseHeight']) + \
collections.Counter(kafka_dict_deque[i]['PulseHeight'])
histogrammed_data_list[i]['StartSig'] = collections.Counter(histogrammed_data_list[i]['StartSig']) + \
collections.Counter(kafka_dict_deque[i]['StartSig'])
histogrammed_data_list[i]['Misplace'] = collections.Counter(histogrammed_data_list[i]['Misplace']) + \
collections.Counter(kafka_dict_deque[i]['Misplace'])
histogrammed_data_list[i]['MaxSlope'] = collections.Counter(histogrammed_data_list[i]['MaxSlope']) + \
collections.Counter(kafka_dict_deque[i]['MaxSlope'])
histogrammed_data_list[i]['AreaData'] = collections.Counter(histogrammed_data_list[i]['AreaData']) + \
collections.Counter(kafka_dict_deque[i]['AreaData'])
figure, axes = plot_func.callable_dict_sel_ch_grph_same(ch_list, graph_list, histogrammed_data_list, figure, axes)
plt.pause(1)
plt.draw()
exit()
# ############code to read data kafka data and sort into frames###################################
# position_histo = collections.Counter()
# kafka_data_dict = {'position': collections.Counter()}
# V2
# ProcDataQueue = queue.Queue(maxsize=0)
# histogrammed_data = {'position': collections.Counter(), 'PulseHeight': collections.Counter()}
# V3
# ProcDataQueue_list = [queue.Queue(maxsize=0) for i in range(24)]
# def data_split_live_dict_v1(kafka_data):
# position = []
# line = kafka_data.get("packet")[128:]
# kafka_data_length = (len(line))
# for i in range(0, kafka_data_length, 32): # return 32 character chunks
# position.append(int(line[i + 29:i + 32], 16))
# ProcDataQueue.put(collections.Counter(position))
# def data_split_live_dict_v2(kafka_data):
# position, PulseHeight = [], []
# line = kafka_data.get("packet")[128:]
# kafka_data_length = (len(line))
# for i in range(0, kafka_data_length, 32): # return 32 character chunks
# position.append(int(line[i + 29:i + 32], 16))
# PulseHeight.append(int(line[i + 26:i + 29], 16))
# ProcDataQueue.put(collections.Counter(position))
# ProcDataQueue.put(collections.Counter(PulseHeight))
# def data_split_live_dict_v3(kafka_data):
# position = [[] for i in range(24)]
# PulseHeight = [[] for i in range(24)]
# # channel_offset = (int(list(kafka_data.keys())[l][11:]) - 1) * 6
# line = kafka_data.get("packet")[128:]
# kafka_data_length = (len(line))
# for i in range(0, kafka_data_length, 32): # return 32 character chunks
# channel = int(((bin(int('1' + (line[i + 11:i + 13]), 16))[3:])[3:6]), 2) # + channel_offset
# position[channel].append(int(line[i + 29:i + 32], 16))
# PulseHeight[channel].append(int(line[i + 26:i + 29], 16))
# for i in range(0, 24, 1):
# ProcDataQueue_list[i].put(collections.Counter(position[i]))
# ProcDataQueue_list[i].put(collections.Counter(PulseHeight[i]))
# while ProcDataQueue.qsize() > 0:
# print(ProcDataQueue.qsize())
# position_histo = position_histo + ProcDataQueue.get()
# axes.bar(list(position_histo.keys()), position_histo.values(), color='red', width=1)
# V2
# while ProcDataQueue.qsize() > 0:
# print(ProcDataQueue.qsize())
# histogrammed_data['position'] = collections.Counter(histogrammed_data['position']) + \
# (ProcDataQueue.get())
# histogrammed_data['PulseHeight'] = collections.Counter(histogrammed_data['PulseHeight']) + \
# (ProcDataQueue.get())
# axes[0].bar(list(histogrammed_data['position'].keys()), histogrammed_data['position'].values(), color='red',
# width=1)
# axes[1].bar(list(histogrammed_data['PulseHeight'].keys()), histogrammed_data['PulseHeight'].values(),
# color='red') # , width=1)
# V3
# while (ProcDataQueue_list[0].qsize() > 0) or (ProcDataQueue_list[1].qsize() > 0):
# print(ProcDataQueue_list[0].qsize())
# print(ProcDataQueue_list[1].qsize())
# for i in range(0, 24, 1):
# histogrammed_data_list[i]['position'] = collections.Counter(histogrammed_data_list[i]['position']) + \
# (ProcDataQueue_list[i].get())
# histogrammed_data_list[i]['PulseHeight'] = collections.Counter(histogrammed_data_list[i]['PulseHeight']) + \
# (ProcDataQueue_list[i].get())
# axes[0,0].bar(list(histogrammed_data_list[0]['position'].keys()), histogrammed_data_list[0]['position'].values(), color='red',
# width=1)
# axes[1,0].bar(list(histogrammed_data_list[0]['PulseHeight'].keys()), histogrammed_data_list[0]['PulseHeight'].values(),
# color='red') # , width=1)
# axes[0, 1].bar(list(histogrammed_data_list[1]['position'].keys()), histogrammed_data_list[1]['position'].values(),
# color='red',
# width=1)
# axes[1, 1].bar(list(histogrammed_data_list[1]['PulseHeight'].keys()),
# histogrammed_data_list[1]['PulseHeight'].values(),
# color='red') # , width=1)
# axes[0, 0].bar(list(histogrammed_data_list[0]['position'].keys()), histogrammed_data_list[0]['position'].values(),
# color='red',
# width=1)
# axes[1, 0].bar(list(histogrammed_data_list[0]['PulseHeight'].keys()),
# histogrammed_data_list[0]['PulseHeight'].values(),
# color='red') # , width=1)
# axes[0, 1].bar(list(histogrammed_data_list[1]['position'].keys()), histogrammed_data_list[1]['position'].values(),
# color='red',
# width=1)
# axes[1, 1].bar(list(histogrammed_data_list[1]['PulseHeight'].keys()),
# histogrammed_data_list[1]['PulseHeight'].values(),
# color='red') # , width=1)
# plot_func.legend_without_duplicate_labels(axes[0,0])
# handles, labels = axes[0, 0].get_legend_handles_labels()
# if len(labels) != 0:
# axes[0,0].legend(handles, labels[-1:])