-
Notifications
You must be signed in to change notification settings - Fork 4
/
install.sh
15 lines (10 loc) · 1.16 KB
/
install.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
clear
conda create --name microadam python=3.9 -y && conda activate microadam
pip3 install cmake packaging # required for llm-foundry
#cd ~/MicroAdam/llm-foundry && pip3 install -e ".[gpu]"
pip3 install torch==2.3.0 torchaudio==2.3.0 torchvision==0.18.0 torchmetrics==1.3.2 torch-optimizer==0.3.0 accelerate==0.25.0 transformers==4.40.2 datasets==2.19.1 einops==0.7.0 triton==2.3.0 huggingface-hub==0.22.2 mosaicml==0.22.0 mosaicml-cli==0.6.23 mosaicml-streaming==0.7.5 numpy==1.26.4 urllib3==1.26.18 psutil==5.9.8 packaging==24.0
pip3 install fsspec==2023.6.0 mlflow==2.12.1 pyarrow==15.0.2 pyarrow-hotfix==0.6 sentencepiece==0.1.97 tenacity==8.3.0 bs4==0.0.2 flash-attn==2.5.8 pydantic==2.7.1 pydantic_core==2.18.2
pip3 install ista-daslab-optimizers bitsandbytes came-pytorch # transformers mosaicml mosaicml-streaming
### We evaluate the model `lm-evaluation-harness` immediately after the training to log the results to wandb
### We need to install the evaluation package at the commit specified below:
cd ~ && git clone [email protected]:EleutherAI/lm-evaluation-harness.git && cd ~/lm-evaluation-harness && git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463 && pip3 install -e .