-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmultitrain.sh
179 lines (159 loc) · 5.67 KB
/
multitrain.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/bin/bash
# Exit immediately if a command exits with a non-zero status
set -e
###############################################################################
# Common environment variables (unchanged between runs)
###############################################################################
export VOCAB_SIZE=32000 # 50304
export BATCH_SIZE=64
export ACC_STEPS=8
export SEQUENCE_LENGTH=512
export DATASET="c4" # "slimpajama"
# Quantization configuration
export W_QUANT="FourEightMaskedQuantizer"
export A_QUANT="NoQuantizer"
export W_BITS=16
export A_BITS=16
export W_QUANT_KWARGS="{}"
export A_QUANT_KWARGS="{}"
###############################################################################
# 1) 30M configuration
###############################################################################
export N_LAYER=6
export N_EMBD=640
export N_HEAD=5
export LR=0.0012
export TOKENS=3000000000 # 3B
export MODEL_SIZE_PREFIX="30M"
# Calculate iterations and warmup steps
export ITERATIONS=$((TOKENS / (BATCH_SIZE * ACC_STEPS * SEQUENCE_LENGTH)))
export WARMUP_STEPS=$((ITERATIONS / 10))
WANDB_PREFIX="UNTIED-${MODEL_SIZE_PREFIX}-${W_QUANT}@${W_BITS}:${A_QUANT}@${A_BITS}-${DATASET}"
NUM_GPUS=$(nvidia-smi --query-gpu=name --format=csv,noheader | wc -l)
echo "===== Running 30M configuration ====="
# torchrun --nproc_per_node=${NUM_GPUS} ./src/main.py \
# --distributed-backend nccl \
# --dataset ${DATASET} \
# --model llama \
# --compile \
# --latest-ckpt-interval 20000 \
# --acc-steps ${ACC_STEPS} \
# --batch-size ${BATCH_SIZE} \
# --wandb \
# --wandb-project "llm-baselines" \
# --wandb-run-prefix "${WANDB_PREFIX}" \
# --n-layer ${N_LAYER} \
# --n-embd ${N_EMBD} \
# --n-head ${N_HEAD} \
# --warmup-steps ${WARMUP_STEPS} \
# --iterations ${ITERATIONS} \
# --lr ${LR} \
# --w-quant ${W_QUANT} \
# --w-quant-kwargs "${W_QUANT_KWARGS}" \
# --a-quant ${A_QUANT} \
# --a-quant-kwargs "${A_QUANT_KWARGS}"
###############################################################################
# 2) 50M configuration
###############################################################################
export N_LAYER=7
export N_EMBD=768
export N_HEAD=6
export LR=0.0012
export TOKENS=5000000000 # 5B
export MODEL_SIZE_PREFIX="50M"
# Calculate iterations and warmup steps
export ITERATIONS=$((TOKENS / (BATCH_SIZE * ACC_STEPS * SEQUENCE_LENGTH)))
export WARMUP_STEPS=$((ITERATIONS / 10))
WANDB_PREFIX="UNTIED-${MODEL_SIZE_PREFIX}-${W_QUANT}@${W_BITS}:${A_QUANT}@${A_BITS}-${DATASET}"
echo "===== Running 50M configuration ====="
torchrun --nproc_per_node=${NUM_GPUS} ./src/main.py \
--distributed-backend nccl \
--dataset ${DATASET} \
--model llama \
--compile \
--latest-ckpt-interval 20000 \
--acc-steps ${ACC_STEPS} \
--batch-size ${BATCH_SIZE} \
--wandb \
--wandb-project "llm-baselines" \
--wandb-run-prefix "${WANDB_PREFIX}" \
--n-layer ${N_LAYER} \
--n-embd ${N_EMBD} \
--n-head ${N_HEAD} \
--warmup-steps ${WARMUP_STEPS} \
--iterations ${ITERATIONS} \
--lr ${LR} \
--w-quant ${W_QUANT} \
--w-quant-kwargs "${W_QUANT_KWARGS}" \
--a-quant ${A_QUANT} \
--a-quant-kwargs "${A_QUANT_KWARGS}"
###############################################################################
# 3) 100M configuration
###############################################################################
export N_LAYER=8
export N_EMBD=1024
export N_HEAD=8
export LR=0.0006
export TOKENS=10000000000 # 10B
export MODEL_SIZE_PREFIX="100M"
# Calculate iterations and warmup steps
export ITERATIONS=$((TOKENS / (BATCH_SIZE * ACC_STEPS * SEQUENCE_LENGTH)))
export WARMUP_STEPS=$((ITERATIONS / 10))
WANDB_PREFIX="UNTIED-${MODEL_SIZE_PREFIX}-${W_QUANT}@${W_BITS}:${A_QUANT}@${A_BITS}-${DATASET}"
echo "===== Running 100M configuration ====="
torchrun --nproc_per_node=${NUM_GPUS} ./src/main.py \
--distributed-backend nccl \
--dataset ${DATASET} \
--model llama \
--compile \
--latest-ckpt-interval 20000 \
--acc-steps ${ACC_STEPS} \
--batch-size ${BATCH_SIZE} \
--wandb \
--wandb-project "llm-baselines" \
--wandb-run-prefix "${WANDB_PREFIX}" \
--n-layer ${N_LAYER} \
--n-embd ${N_EMBD} \
--n-head ${N_HEAD} \
--warmup-steps ${WARMUP_STEPS} \
--iterations ${ITERATIONS} \
--lr ${LR} \
--w-quant ${W_QUANT} \
--w-quant-kwargs "${W_QUANT_KWARGS}" \
--a-quant ${A_QUANT} \
--a-quant-kwargs "${A_QUANT_KWARGS}"
###############################################################################
# 4) 200M configuration
###############################################################################
export N_LAYER=10
export N_EMBD=1280
export N_HEAD=10
export LR=0.0003
export TOKENS=20000000000 # 20B
export MODEL_SIZE_PREFIX="200M"
# Calculate iterations and warmup steps
export ITERATIONS=$((TOKENS / (BATCH_SIZE * ACC_STEPS * SEQUENCE_LENGTH)))
export WARMUP_STEPS=$((ITERATIONS / 10))
WANDB_PREFIX="UNTIED-${MODEL_SIZE_PREFIX}-${W_QUANT}@${W_BITS}:${A_QUANT}@${A_BITS}-${DATASET}"
echo "===== Running 200M configuration ====="
torchrun --nproc_per_node=${NUM_GPUS} ./src/main.py \
--distributed-backend nccl \
--dataset ${DATASET} \
--model llama \
--compile \
--latest-ckpt-interval 20000 \
--acc-steps ${ACC_STEPS} \
--batch-size ${BATCH_SIZE} \
--wandb \
--wandb-project "llm-baselines" \
--wandb-run-prefix "${WANDB_PREFIX}" \
--n-layer ${N_LAYER} \
--n-embd ${N_EMBD} \
--n-head ${N_HEAD} \
--warmup-steps ${WARMUP_STEPS} \
--iterations ${ITERATIONS} \
--lr ${LR} \
--w-quant ${W_QUANT} \
--w-quant-kwargs "${W_QUANT_KWARGS}" \
--a-quant ${A_QUANT} \
--a-quant-kwargs "${A_QUANT_KWARGS}"