Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CUDA OOM for fine-tuning sparse llama3-8b. #6

Open
Arnav0400 opened this issue Jul 2, 2024 · 0 comments
Open

CUDA OOM for fine-tuning sparse llama3-8b. #6

Arnav0400 opened this issue Jul 2, 2024 · 0 comments
Labels
bug Something isn't working

Comments

@Arnav0400
Copy link

Environment

Collecting system information...

System Environment Report
Created: 2024-07-02 09:44:39 UTC

PyTorch information

PyTorch version: 2.0.1+cu117
Is debug build: False
CUDA used to build PyTorch: 11.7
ROCM used to build PyTorch: N/A

OS: Debian GNU/Linux 11 (bullseye) (x86_64)
GCC version: (Debian 10.2.1-6) 10.2.1 20210110
Clang version: Could not collect
CMake version: version 3.26.3
Libc version: glibc-2.31

Python version: 3.10.14 | packaged by conda-forge | (main, Mar 20 2024, 12:45:18) [GCC 12.3.0] (64-bit runtime)
Python platform: Linux-5.10.0-30-cloud-amd64-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB

Nvidia driver version: 550.90.07
cuDNN version: Probably one of the following:
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn.so.8.9.0
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.0
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.0
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.0
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.0
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.0
/usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 24
On-line CPU(s) list: 0-23
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) CPU @ 2.20GHz
Stepping: 7
CPU MHz: 2200.230
BogoMIPS: 4400.46
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 384 KiB
L1i cache: 384 KiB
L2 cache: 12 MiB
L3 cache: 38.5 MiB
NUMA node0 CPU(s): 0-23
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.24.4
[pip3] pytorch-ranger==0.1.1
[pip3] torch==2.0.1
[pip3] torch-optimizer==0.3.0
[pip3] torchdata==0.6.1
[pip3] torchmetrics==0.11.4
[pip3] torchtext==0.15.2
[pip3] torchvision==0.15.2
[conda] numpy 1.24.4 pypi_0 pypi
[conda] pytorch-ranger 0.1.1 pypi_0 pypi
[conda] torch 2.0.1 pypi_0 pypi
[conda] torch-optimizer 0.3.0 pypi_0 pypi
[conda] torchdata 0.6.1 pypi_0 pypi
[conda] torchmetrics 0.11.4 pypi_0 pypi
[conda] torchtext 0.15.2 pypi_0 pypi
[conda] torchvision 0.15.2 pypi_0 pypi

Composer information

Composer version: 0.15.1
Composer commit hash: None
Host processor model name: Intel(R) Xeon(R) CPU @ 2.20GHz
Host processor core count: 12
Number of nodes: 1
Accelerator model name: NVIDIA A100-SXM4-80GB
Accelerators per node: 1
CUDA Device Count: 2

To reproduce

Steps to reproduce the behavior:

  1. Replace TEACHER_MDL='meta-llama/Meta-Llama-3-8B' in 'SparseFinetuning/scripts/train/scripts/mpt/run_sparse_finetune.sh'
  2. Replace SPARSE_MDL with corresponding sparse model path
  3. Run run_sparse_finetune.sh

Expected behavior

Expected to run at atleast 1 PER_DEVICE_BS but facing CUDA OOM on 2x80GB A100s.

@Arnav0400 Arnav0400 added the bug Something isn't working label Jul 2, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

1 participant