-
Notifications
You must be signed in to change notification settings - Fork 1
/
std_train.py
418 lines (354 loc) · 14.6 KB
/
std_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
"""
Copyright 2023 Universitat Politècnica de Catalunya
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import tensorflow as tf
import random
import time
from matplotlib import pyplot as plt
import numpy as np
from typing import List, Optional, Union, Tuple, Dict, Any
# Run eagerly-> Turn true for debugging only
RUN_EAGERLY = False
tf.config.run_functions_eagerly(RUN_EAGERLY)
def _reset_seeds(seed: int = 42) -> None:
"""Reset rng seeds, and also indicate tf if to run eagerly or not
Parameters
----------
seed : int, optional
Seed for rngs, by default 42
"""
random.seed(seed)
tf.random.set_seed(seed)
np.random.seed(seed)
def get_default_callbacks() -> List[tf.keras.callbacks.Callback]:
"""Returns the default callbacks for the training of the models
(EarlyStopping and ReduceLROnPlateau callbacks)
"""
return [
tf.keras.callbacks.EarlyStopping(
monitor="val_loss",
patience=10,
restore_best_weights=True,
min_delta=0.0002,
start_from_epoch=4,
),
tf.keras.callbacks.ReduceLROnPlateau(
factor=0.5,
patience=5,
verbose=1,
mode="min",
min_delta=0.001,
),
]
def get_default_hyperparams() -> Dict[str, Any]:
"""Returns the default hyperparameters for the training of the models. That is
- Adam optimizer with lr=0.001
- MeanAbsolutePercentageError loss
- No additional metrics
- EarlyStopping and ReduceLROnPlateau callbacks
- 100 epochs
"""
return {
"optimizer": tf.keras.optimizers.AdamW(learning_rate=0.001),
"loss": tf.keras.losses.MeanAbsolutePercentageError(),
"metrics": ['MeanAbsolutePercentageError'],
"additional_callbacks": get_default_callbacks(),
"epochs": 150,
}
def get_mean_std_dict(
ds: tf.data.Dataset, params: List[str], include_y: Optional[str] = None
) -> Dict[str, Tuple[np.ndarray, np.ndarray]]:
"""Get the min and the max-min for different parameters of a dataset. Later used by the models for the min-max normalization.
Parameters
----------
ds : tf.data.Dataset
Training dataset where to base the min-max normalization from.
params : List[str]
List of strings indicating the parameters to extract the features from.
include_y : Optional[str], optional
Indicates if to also extract the features of the output variable.
Inputs indicate the string key used on the return dict. If None, it is not included.
By default None.
Returns
-------
Dict[str, Tuple[np.ndarray, np.ndarray]]
Dictionary containing the values needed for the min-max normalization.
The first value is the min value of the parameter, and the second is 1 / (max - min).
"""
# Use first sample to get the shape of the tensors
iter_ds = iter(ds)
sample, label = next(iter_ds)
params_lists = {param: sample[param].numpy() for param in params}
if include_y:
params_lists[include_y] = label.numpy()
# Include the rest of the samples
for sample, label in iter_ds:
for param in params:
params_lists[param] = np.concatenate(
(params_lists[param], sample[param].numpy()), axis=0
)
if include_y:
params_lists[include_y] = np.concatenate(
(params_lists[include_y], label.numpy()), axis=0
)
scores = dict()
for param, param_list in params_lists.items():
mean_val = np.mean(param_list, axis=0)
std_val = np.std(param_list, axis=0)
if all(std_val) == 0:
scores[param] = [mean_val, std_val]
else:
scores[param] = [mean_val, 1/std_val]
return scores
def get_min_max_dict(
ds: tf.data.Dataset, params: List[str], include_y: Optional[str] = None
) -> Dict[str, Tuple[np.ndarray, np.ndarray]]:
"""Get the min and the max-min for different parameters of a dataset. Later used by the models for the min-max normalization.
Parameters
----------
ds : tf.data.Dataset
Training dataset where to base the min-max normalization from.
params : List[str]
List of strings indicating the parameters to extract the features from.
include_y : Optional[str], optional
Indicates if to also extract the features of the output variable.
Inputs indicate the string key used on the return dict. If None, it is not included.
By default None.
Returns
-------
Dict[str, Tuple[np.ndarray, np.ndarray]]
Dictionary containing the values needed for the min-max normalization.
The first value is the min value of the parameter, and the second is 1 / (max - min).
"""
# Use first sample to get the shape of the tensors
iter_ds = iter(ds)
sample, label = next(iter_ds)
params_lists = {param: sample[param].numpy() for param in params}
if include_y:
params_lists[include_y] = label.numpy()
# Include the rest of the samples
for sample, label in iter_ds:
#print(label)
for param in params:
params_lists[param] = np.concatenate(
(params_lists[param], sample[param].numpy()), axis=0
)
if include_y:
params_lists[include_y] = np.concatenate(
(params_lists[include_y], label.numpy()), axis=0
)
scores = dict()
for param, param_list in params_lists.items():
min_val = np.min(param_list, axis=0)
min_max_val = np.max(param_list, axis=0) - min_val
if min_max_val.size == 1 and min_max_val == 0:
scores[param] = [min_val, 0]
print(f"Min-max normalization Warning: {param} has a max-min of 0.")
elif min_max_val.size > 1 and np.any(min_max_val == 0):
min_max_val[min_max_val != 0] = 1 / min_max_val[min_max_val != 0]
scores[param] = [min_val, min_max_val]
print(
f"Min-max normalization Warning: Several values of {param} has a max-min of 0."
)
else:
scores[param] = [min_val, 1 / min_max_val]
return scores
def train_and_evaluate(
ds_path: Union[str, Tuple[str, str]],
model: tf.keras.Model,
optimizer: tf.keras.optimizers.Optimizer,
loss: tf.keras.losses.Loss,
metrics: List[tf.keras.metrics.Metric],
additional_callbacks: List[tf.keras.callbacks.Callback],
dataset_type,
epochs: int = 100,
ckpt_path: Optional[str] = None,
tensorboard_path: Optional[str] = None,
restore_ckpt: bool = False,
final_eval: bool = True,
) -> Tuple[tf.keras.Model, Union[float, np.ndarray, None]]:
"""
Train the given model with the given dataset, using the provided parameters
Besides for defining the hyperparameters, refer to get_default_hyperparams()
Parameters
----------
ds_path : str
Path to the dataset. Datasets are expected to be in tf.data.Dataset format, and to be compressed with GZIP.
If ds_path is a string, then it used as the path to both the training and validation dataset.
If so, it is expected that the training and validation datasets are located in "{ds_path}/training" and "{ds_path}/validation" respectively.
If ds_path is a tuple of two strings, then the first string is used as the path to the training dataset,
and the second string is used as the path to the validation dataset.
model : tf.keras.Model
Instance of the model to train. Besides being a tf.keras.Model, it should have the same constructor and the name parameter
as the models in the models module.
optimizer : tf.keras.Optimizer
Optimizer used by the training process
loss : tf.keras.losses.Loss
Loss function to be used by the process
metrics : List[tf.keras.metrics.Metric]
List of additional metrics to consider during training
additional_callbacks : List[tf.keras.callbacks.Callback], optional
List containing tensorflow callback functions to be added to the training process.
A callback to generate tensorboard and checkpoint files at each epoch is already added.
epochs : int, optional
Number of epochs of in the training process, by default 100
ckpt_path : Optional[str], optional
Path where to store the training checkpints, by default "{repository root}/ckpt/{model name}"
tensorboard_path : Optional[str], optional
Path where to store tensorboard logs, by default "{repository root}/tensorboard/{model name}"
restore_ckpt : bool, optional
If True, before training the model, it is checked if there is a checkpoint file in the ckpt_path.
If so, the model loads the latest checkpoint and continues training from there. By default False.
final_eval : bool, optional
If True, the model is evaluated on the validation dataset one last time after training, by default True
Returns
-------
Tuple[tf.keras.Model, Union[float, np.ndarray, None]]
Instance of the trained model, and the result of its evaluation
"""
# Reset tf state
_reset_seeds()
# Check epoch number is valid
assert epochs > 0, "Epochs must be greater than 0"
# Load ds
if isinstance(ds_path, str):
ds_train = tf.data.Dataset.load(f"{ds_path}/training", compression="GZIP")
ds_val = tf.data.Dataset.load(f"{ds_path}/validation", compression="GZIP")
else:
ds_train = tf.data.Dataset.load(ds_path[0], compression="GZIP")
ds_val = tf.data.Dataset.load(ds_path[1], compression="GZIP")
# Checkpoint path
if ckpt_path is None:
ckpt_path = f"ckpt/{model.name}"
# Tensorboard path
if tensorboard_path is None:
tensorboard_path = f"tensorboard/{model.name}"
# Apply min-max normalization
#model.set_min_max_scores(get_min_max_dict(ds_train, model.min_max_scores_fields, include_y='delay'))
model.set_mean_std_scores(get_mean_std_dict(ds_train, model.mean_std_scores_fields))
# Compile model
model.compile(
optimizer=optimizer,
loss=loss,
metrics=metrics,
run_eagerly=RUN_EAGERLY,
)
# Load checkpoint
if restore_ckpt:
ckpt = tf.train.latest_checkpoint(ckpt_path)
if ckpt is not None:
print("Restoring from checkpoint")
model.load_weights(ckpt)
else:
print(
f"WARNING: No checkpoint was found at '{ckpt_path}', training from scratch instead..."
)
else:
print("restore_ckpt = False, training from scratch")
# Create callbacks
cpkt_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=os.path.join(ckpt_path, "{epoch:02d}-{val_loss:.4f}"),
verbose=1,
mode="min",
save_best_only=False,
save_weights_only=True,
save_freq="epoch",
)
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=tensorboard_path, histogram_freq=1
)
t0 = time.time()
# Train model
history = model.fit(
ds_train,
validation_data=ds_val,
epochs=epochs,
callbacks=[cpkt_callback, tensorboard_callback] + additional_callbacks,
use_multiprocessing=True,
)
print("Training time:", time.time()-t0)
if final_eval:
plt.plot(history.history['mean_absolute_percentage_error'])
plt.plot(history.history['val_mean_absolute_percentage_error'])
plt.title(f'{dataset_type} model MAPE')
plt.ylabel('MAPE')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper right')
plt.savefig(f'train_val_MAPE_{dataset_type}')
return model, model.evaluate(ds_val)
else:
return model, None
if __name__ == "__main__":
import argparse
import std_models
parser = argparse.ArgumentParser(
description="Train a model for flow delay prediction"
)
parser.add_argument("-ds", type=str, help="Either 'CBR+MB' or 'MB'", required=True)
parser.add_argument("--ckpt-path", type=str, required=True)
parser.add_argument(
"-cfv", action="store_true", help="Perform cross-fold validation"
)
parser.add_argument("--predict", action="store_true", help="Generate predict file")
parser.add_argument(
"--n-folds",
type=int,
default=5,
help="Number of folds for cross-fold validation. Default is 5. Ignored if -cf is not set",
)
args = parser.parse_args()
# Check the scenario
if args.ds == "CBR+MB":
ds_path = "datasets/data_cbr_mb_13_cv"
model = std_models.Baseline_cbr_mb
elif args.ds == "MB":
ds_path = "datasets/data_mb_13_cv"
model = std_models.Baseline_mb
else:
raise ValueError("Unrecognized dataset")
# code for simple training/validation
if not args.cfv:
ckpt_path = f"ckpt/{args.ckpt_path}/"
_reset_seeds()
trained_model, evaluation = train_and_evaluate(
os.path.join(ds_path, "0"),
model(),
**get_default_hyperparams(),
ckpt_path=ckpt_path,
dataset_type=args.ds
)
print("Final evaluation:", evaluation)
# code for cross-fold validation
else:
trained_models = []
trained_models_val_loss = []
ckpt_path = f"ckpt/{model.name}_cv/"
tensorboard_path = f"tensorboard/{model.name}_cv/"
# Execute each fold
for fold_idx in range(args.n_folds):
print("***** Fold", fold_idx, "*****")
_reset_seeds()
trained_model, evaluation = train_and_evaluate(
os.path.join(ds_path, str(fold_idx)),
model(),
**get_default_hyperparams(),
dataset_type=args.ds,
ckpt_path=os.path.join(ckpt_path, str(fold_idx)),
tensorboard_path=os.path.join(tensorboard_path, str(fold_idx)),
)
trained_models.append(trained_model)
trained_models_val_loss.append(evaluation)
# Print final evaluation
for fold_idx, evaluation in enumerate(trained_models_val_loss):
print(f"Fold {fold_idx} evaluation:", trained_models_val_loss[fold_idx])