-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmatlab_resize.py
276 lines (211 loc) · 9.15 KB
/
matlab_resize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# This code is referenced from matlab_imresize with modifications
# Reference: https://github.com/fatheral/matlab_imresize/blob/master/imresize.py # noqa
# Original licence: Copyright (c) 2020 fatheral, under the MIT License.
# Modified from MMediting: https://github.com/open-mmlab/mmediting
import numpy as np
def get_size_from_scale(input_size, scale_factor):
"""Get the output size given input size and scale factor.
Args:
input_size (tuple): The size of the input image.
scale_factor (float): The resize factor.
Returns:
list[int]: The size of the output image.
"""
output_shape = [
int(np.ceil(scale * shape))
for (scale, shape) in zip(scale_factor, input_size)
]
return output_shape
def get_scale_from_size(input_size, output_size):
"""Get the scale factor given input size and output size.
Args:
input_size (tuple(int)): The size of the input image.
output_size (tuple(int)): The size of the output image.
Returns:
list[float]: The scale factor of each dimension.
"""
scale = [
1.0 * output_shape / input_shape
for (input_shape, output_shape) in zip(input_size, output_size)
]
return scale
def _cubic(x):
""" Cubic function.
Args:
x (ndarray): The distance from the center position.
Returns:
ndarray: The weight corresponding to a particular distance.
"""
x = np.array(x, dtype=np.float32)
x_abs = np.abs(x)
x_abs_sq = x_abs**2
x_abs_cu = x_abs_sq * x_abs
# if |x| <= 1: y = 1.5|x|^3 - 2.5|x|^2 + 1
# if 1 < |x| <= 2: -0.5|x|^3 + 2.5|x|^2 - 4|x| + 2
f = (1.5 * x_abs_cu - 2.5 * x_abs_sq + 1) * (x_abs <= 1) + (
-0.5 * x_abs_cu + 2.5 * x_abs_sq - 4 * x_abs + 2) * ((1 < x_abs) &
(x_abs <= 2))
return f
def get_weights_indices(input_length, output_length, scale, kernel,
kernel_width):
"""Get weights and indices for interpolation.
Args:
input_length (int): Length of the input sequence.
output_length (int): Length of the output sequence.
scale (float): Scale factor.
kernel (func): The kernel used for resizing.
kernel_width (int): The width of the kernel.
Returns:
list[ndarray]: The weights and the indices for interpolation.
"""
if scale < 1: # modified kernel for antialiasing
def h(x):
return scale * kernel(scale * x)
kernel_width = 1.0 * kernel_width / scale
else:
h = kernel
kernel_width = kernel_width
# coordinates of output
x = np.arange(1, output_length + 1).astype(np.float32)
# coordinates of input
u = x / scale + 0.5 * (1 - 1 / scale)
left = np.floor(u - kernel_width / 2) # leftmost pixel
p = int(np.ceil(kernel_width)) + 2 # maximum number of pixels
# indices of input pixels
ind = left[:, np.newaxis, ...] + np.arange(p)
indices = ind.astype(np.int32)
# weights of input pixels
weights = h(u[:, np.newaxis, ...] - indices - 1)
weights = weights / np.sum(weights, axis=1)[:, np.newaxis, ...]
# remove all-zero columns
aux = np.concatenate(
(np.arange(input_length), np.arange(input_length - 1, -1,
step=-1))).astype(np.int32)
indices = aux[np.mod(indices, aux.size)]
ind2store = np.nonzero(np.any(weights, axis=0))
weights = weights[:, ind2store]
indices = indices[:, ind2store]
return weights, indices
def resize_along_dim(img_in, weights, indices, dim):
"""Resize along a specific dimension.
Args:
img_in (ndarray): The input image.
weights (ndarray): The weights used for interpolation, computed from
[get_weights_indices].
indices (ndarray): The indices used for interpolation, computed from
[get_weights_indices].
dim (int): Which dimension to undergo interpolation.
Returns:
ndarray: Interpolated (along one dimension) image.
"""
img_in = img_in.astype(np.float32)
w_shape = weights.shape
output_shape = list(img_in.shape)
output_shape[dim] = w_shape[0]
img_out = np.zeros(output_shape)
if dim == 0:
for i in range(w_shape[0]):
w = weights[i, :][np.newaxis, ...]
ind = indices[i, :]
img_slice = img_in[ind, :]
img_out[i] = np.sum(np.squeeze(img_slice, axis=0) * w.T, axis=0)
elif dim == 1:
for i in range(w_shape[0]):
w = weights[i, :][:, :, np.newaxis]
ind = indices[i, :]
img_slice = img_in[:, ind]
img_out[:, i] = np.sum(np.squeeze(img_slice, axis=1) * w.T, axis=1)
if img_in.dtype == np.uint8:
img_out = np.clip(img_out, 0, 255)
return np.around(img_out).astype(np.uint8)
else:
return img_out
class MATLABLikeResize:
"""Resize the input image using MATLAB-like downsampling.
Currently support bicubic interpolation only. Note that the output of
this function is slightly different from the official MATLAB function.
Required keys are the keys in attribute "keys". Added or modified keys
are "scale" and "output_shape", and the keys in attribute "keys".
Args:
keys (list[str]): A list of keys whose values are modified.
scale (float | None, optional): The scale factor of the resize
operation. If None, it will be determined by output_shape.
Default: None.
output_shape (tuple(int) | None, optional): The size of the output
image. If None, it will be determined by scale. Note that if
scale is provided, output_shape will not be used.
Default: None.
kernel (str, optional): The kernel for the resize operation.
Currently support 'bicubic' only. Default: 'bicubic'.
kernel_width (float): The kernel width. Currently support 4.0 only.
Default: 4.0.
"""
def __init__(self,
keys=None,
scale=None,
output_shape=None,
kernel='bicubic',
kernel_width=4.0):
if kernel.lower() != 'bicubic':
raise ValueError('Currently support bicubic kernel only.')
if float(kernel_width) != 4.0:
raise ValueError('Current support only width=4 only.')
if scale is None and output_shape is None:
raise ValueError('"scale" and "output_shape" cannot be both None')
self.kernel_func = _cubic
self.keys = keys
self.scale = scale
self.output_shape = output_shape
self.kernel = kernel
self.kernel_width = kernel_width
def resize_img(self, img):
return self._resize(img)
def _resize(self, img):
weights = {}
indices = {}
# compute scale and output_size
if self.scale is not None:
scale = float(self.scale)
scale = [scale, scale]
output_size = get_size_from_scale(img.shape, scale)
else:
scale = get_scale_from_size(img.shape, self.output_shape)
output_size = list(self.output_shape)
# apply cubic interpolation along two dimensions
order = np.argsort(np.array(scale))
for k in range(2):
key = (img.shape[k], output_size[k], scale[k], self.kernel_func,
self.kernel_width)
weight, index = get_weights_indices(img.shape[k], output_size[k],
scale[k], self.kernel_func,
self.kernel_width)
weights[key] = weight
indices[key] = index
output = np.copy(img)
if output.ndim == 2: # grayscale image
output = output[:, :, np.newaxis]
for k in range(2):
dim = order[k]
key = (img.shape[dim], output_size[dim], scale[dim],
self.kernel_func, self.kernel_width)
output = resize_along_dim(output, weights[key], indices[key], dim)
return output
def __call__(self, results):
for key in self.keys:
is_single_image = False
if isinstance(results[key], np.ndarray):
is_single_image = True
results[key] = [results[key]]
results[key] = [self._resize(img) for img in results[key]]
if is_single_image:
results[key] = results[key][0]
results['scale'] = self.scale
results['output_shape'] = self.output_shape
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += (
f'(keys={self.keys}, scale={self.scale}, '
f'output_shape={self.output_shape}, '
f'kernel={self.kernel}, kernel_width={self.kernel_width})')
return repr_str