-
Notifications
You must be signed in to change notification settings - Fork 0
/
cvae_experiment_kth.py
488 lines (405 loc) · 18.4 KB
/
cvae_experiment_kth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
'''This script demonstrates how to build a variational autoencoder with Keras.
Reference: "Auto-Encoding Variational Bayes" https://arxiv.org/abs/1312.6114
'''
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from scipy.stats import kurtosis
from scipy.misc import imsave
from scipy.misc import imresize
from keras.layers import Input, Dense, Lambda, Layer
from keras.layers import ConvLSTM2D, Conv2D, Conv2DTranspose, Flatten, Reshape, merge, Merge
from keras.layers.merge import Concatenate
from tensorflow.contrib.keras import layers as tf_lay
from keras.models import Model
from keras import backend as K
from keras import metrics
from keras.datasets import mnist
from keras.optimizers import RMSprop
import tensorflow as tf
import fbm_data
from fbm_data import generate_2d_fbms, get_kth_imgs
from local_phase_model import LocalPhase
# train the VAE on MNIST digits
original_dim = 784
original_dim2 = int(np.sqrt(original_dim))
(x_train0, y_train0), (x_test0, y_test0) = mnist.load_data()
n=32
use_fbms = False
batch_size = 100
if use_fbms:
print('USING fBms')
x_train0, x_test0, y_train0, y_test0 = \
generate_2d_fbms(N=50000,n=n,reCalc=False,resize=original_dim)
else:
print('using real imgs')
x_train0, x_test0, y_train0, y_test0 = \
get_kth_imgs(N=50000,n=n,reCalc=False,resize=original_dim)
localphase = LocalPhase(x_train0, x_test0, y_train0, y_test0, recalc_stats=True)
y_test0 = localphase.agg_y_test
y_train0 = localphase.agg_y_train
maxlen = (len(x_train0)/batch_size) * batch_size
x_train0 = x_train0[:maxlen]
y_train0 = y_train0[:maxlen]
maxlen = (len(x_test0)/batch_size) * batch_size
x_test0 = x_test0[:maxlen]
y_test0 = y_test0[:maxlen]
############################################################
latent_dim = 5
latent_dim_w = 64
intermediate_dim = 256
intermediate_dim2 = 256
intermediate_dim3 = 128
epochs = 10
epsilon_std = 1.0
x = Input(batch_shape=(batch_size, original_dim))
noise = Input(batch_shape=(batch_size, latent_dim_w))#np.random.randn(batch_size,latent_dim_w)
x_cond = merge([x,noise],mode='concat',concat_axis=1)
use_my = True
# ------- my implementation ---------------------------------------------
# -------------------------------------------------------------------------
conv_nfilters = 10
conv_filtsize = 3
rnn_nfilters = 10
rnn_filtsize = 5
rec_iters = 4
iter_conv_nfilters = 10
iter_conv_filtsize = 3
def my_encoder(x):
x_in = Reshape((original_dim2,original_dim2))(x)
x_in = Lambda( lambda x: K.expand_dims(x,3))(x_in)
init_conv_res = Conv2D(conv_nfilters,conv_filtsize,activation='relu',padding='same')(x_in)
iter_conv = Conv2D(iter_conv_nfilters,iter_conv_filtsize,activation='relu',padding='same')
iter_conv2 = Conv2D(iter_conv_nfilters,iter_conv_filtsize,activation='relu',padding='same')
conv_res = [ iter_conv(init_conv_res) ]
for i in range(rec_iters-1):
this_res = iter_conv2(conv_res[-1])
conv_res.append(this_res)
conv_res2=[]
for i in conv_res:
conv_res2.append( Lambda(lambda x : K.expand_dims(x,axis=1) )(i) )
conv_res = Concatenate(axis=1)(conv_res2)
rnn_unit = ConvLSTM2D(rnn_nfilters,rnn_filtsize,activation='relu')
#conv_res = Lambda( lambda x: K.expand_dims(x,1))(conv_res) # time steps in 1st dimension
#print conv_res
rnn_res = rnn_unit(conv_res)
#print(conv_res)
#print(rnn_res)
#for i in range(rec_iters-1):
# rnn_res = Lambda( lambda x: K.expand_dims(x,1))(rnn_res)
# rnn_res = rnn_unit(rnn_res) # what about the state?
w_flat = Flatten()(rnn_res)
z_flat = Flatten()(conv_res2[-1])
z_mean = Dense(latent_dim)(z_flat)
z_log_var = Dense(latent_dim)(z_flat)
w_mean = Dense(latent_dim_w)(w_flat)
w_log_var = Dense(latent_dim_w)(w_flat)
return z_mean, z_log_var, w_mean, w_log_var
def my_decoder(z,w,units=None):
if units is None:
z_dense = Dense(original_dim,activation='relu')
w_dense = Dense(original_dim,activation='relu')
rnn_input = Dense(original_dim)
rnn_unit = ConvLSTM2D(rnn_nfilters,rnn_filtsize,padding='same',activation='relu')
iter_conv2 = Conv2DTranspose(iter_conv_nfilters,iter_conv_filtsize,activation='relu',padding='same')
iter_conv = Conv2DTranspose(iter_conv_nfilters,iter_conv_filtsize,activation='relu',padding='same')
#last_deconv = Conv2DTranspose(conv_nfilters,conv_filtsize, activation='relu')
last_conv = Conv2D(1,5,activation='relu',padding='same')
units = [z_dense, w_dense, rnn_input, rnn_unit, iter_conv, iter_conv2, last_conv]
z_dense, w_dense, rnn_input, rnn_unit, iter_conv, iter_conv2, last_conv = units
#z_out = z_dense(z)
w_out = w_dense(w)
#concatted = Concatenate(axis=-1)([z_out,w_out])
conv_input_2d = Reshape((original_dim2,original_dim2))(w_out)
conv_input_2d = Lambda(lambda x: K.expand_dims(x,3))(conv_input_2d)
conv_res = [ iter_conv(conv_input_2d) ]
for i in range(rec_iters-1):
this_res = iter_conv2(conv_res[-1])
conv_res.append(this_res)
conv_res2=[]
for i in conv_res:
conv_res2.append( Lambda(lambda x : K.expand_dims(x,axis=1) )(i) )
conv_res3 = Concatenate(axis=1)(conv_res2)
#rnn_res = rnn_unit(conv_res3)
# now its with rnn_nfilters channels, need to flatten in the depth channel
#rnn_res = last_conv(rnn_res)
rnn_res = last_conv(conv_res[-1])
#print('rnn res',rnn_res)
#decoded = last_deconv(rnn_res)
decoded = Flatten()(rnn_res)
return decoded, units
# -------------------------------------------------------------------------
# --------end my implementation--------------------------------------------
# -------- cvae implementation --------------------------------------------
def cv_encoder(x_cond):
h = Dense(intermediate_dim, activation='relu')(x)
#h = Reshape((16,16))(h)
#h = Lambda(lambda x: K.expand_dims(x,3))(h)
#h1 = Conv2D(10,5,strides=(2,2),padding='valid',activation='relu')(h)
#h1 = Flatten()(h1)
h1=Dense(intermediate_dim2, activation='tanh')(h)
z_mean = Dense(latent_dim)(h1)
z_log_var = Dense(latent_dim)(h1)
#w_mean = Dense(latent_dim_w)(h)
#w_log_var = Dense(latent_dim_w)(h)
return z_mean, z_log_var# , w_mean, w_log_var
def cv_decoder(z_cond,units=None):
fsize = 5
fsize1 = 3
dd = original_dim2 - fsize + 1
n_filters = 5
if units is None:
decoder_h = Dense(intermediate_dim, activation='relu')
decoder_mean = Dense(original_dim, activation='tanh')
w_decoder = Dense(n_filters * dd * dd, activation='tanh')
conv_dec1 = Conv2DTranspose( n_filters,fsize1,strides=(2,2),padding='valid',activation='relu')
conv_dec2 = Conv2DTranspose( n_filters,fsize1,strides=(2,2),padding='valid',activation='relu')
conv_dec = Conv2DTranspose( n_filters,fsize,strides=(1,1),padding='valid',activation='tanh')
#w_decoder_mean = Dense(original_dim, activation='tanh')
units = [decoder_h, decoder_mean, w_decoder, conv_dec, conv_dec1, conv_dec2]#, w_decoder_mean]
#decoder_h, decoder_mean, w_decoder, w_decoder_mean = units
decoder_h, decoder_mean, decoder_w, conv_dec, conv_dec1, conv_dec2= units
h_decoded = decoder_h(z_cond)
w_decoded = decoder_w(h_decoded)
reshaped = Reshape((dd,dd,n_filters))(w_decoded)
deconved = conv_dec1(reshaped)
deconved = conv_dec2(deconved)
deconved = conv_dec(deconved)
deconved = Flatten()(deconved)
x_decoded_mean = decoder_mean(deconved)
#w_decoded = w_decoder(w)
#w_decoded_mean = w_decoder_mean(w_decoded)
#x_decoded_mean = Lambda(lambda x: 0.5*(x+w_decoded_mean))(x_decoded_mean)
return x_decoded_mean, units
# --------- end cvae implementation ---------------------------------------
def default_encoder(x):
h = Dense(intermediate_dim, activation='relu')(x)
z_mean = Dense(latent_dim)(h)
z_log_var = Dense(latent_dim)(h)
w_mean = Dense(latent_dim_w)(h)
w_log_var = Dense(latent_dim_w)(h)
return z_mean, z_log_var, w_mean, w_log_var
def default_decoder(z,w,units=None):
if units is None:
decoder_h = Dense(intermediate_dim, activation='relu')
decoder_mean = Dense(original_dim, activation='tanh')
w_decoder = Dense(intermediate_dim, activation='relu')
w_decoder_mean = Dense(original_dim, activation='tanh')
units = [decoder_h, decoder_mean, w_decoder, w_decoder_mean]
decoder_h, decoder_mean, w_decoder, w_decoder_mean = units
h_decoded = decoder_h(z)
x_decoded_mean = decoder_mean(h_decoded)
w_decoded = w_decoder(w)
w_decoded_mean = w_decoder_mean(w_decoded)
x_decoded_mean = Lambda(lambda x: 0.5*(x+w_decoded_mean))(x_decoded_mean)
return x_decoded_mean, units
use_encoder = cv_encoder if use_my else default_encoder
use_decoder = cv_decoder if use_my else default_decoder
#z_mean, z_log_var, w_mean, w_log_var = use_encoder(x,noise)
z_mean, z_log_var = use_encoder(x_cond)
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(batch_size, latent_dim), mean=0.,
stddev=epsilon_std)
return z_mean + K.exp(z_log_var / 2) * epsilon
#def sampling_w(args):
# w_mean, w_log_var = args
# epsilon = K.random_normal(shape=(batch_size, latent_dim_w), mean=0.,
# stddev=epsilon_std)
# return w_mean + K.exp(w_log_var / 2) * epsilon
# note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var])
z_cond = merge([z, noise],mode='concat',concat_axis=1)
#w = Lambda(sampling_w, output_shape=(latent_dim_w,))([w_mean, w_log_var])
# we instantiate these layers separately so as to reuse them later
x_decoded_mean, units = use_decoder(z_cond)
# Custom loss layer
class CustomVariationalLayer(Layer):
def __init__(self, **kwargs):
self.is_placeholder = True
super(CustomVariationalLayer, self).__init__(**kwargs)
def vae_loss(self, x, x_decoded_mean):
xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean)
kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
#kl_loss_w = - 0.5 * K.sum(1 + w_log_var - K.square(w_mean) - K.exp(w_log_var), axis=-1)
return K.mean(xent_loss + kl_loss)# + kl_loss_w)
def vae_ssim_loss(self, x,x_decoded_mean):
#xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean)
dim1=int(np.sqrt(original_dim))
x = K.reshape(x,[-1,dim1,dim1])
x_decoded_mean = K.reshape(x_decoded_mean,[-1,dim1,dim1])
ssim_loss = original_dim * fbm_data.loss_DSSIS_tf11(x,x_decoded_mean, False)#,int(np.sqrt(original_dim)))
kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
#kl_loss_w = - 0.5 * K.sum(1 + w_log_var - K.square(w_mean) - K.exp(w_log_var), axis=-1)
#ssim_loss = tf.Print(ssim_loss,[K.get_variable_shape(xent_loss+kl_loss), K.get_variable_shape(kl_loss)],'xent ssim ')
#kl_loss_w = - 0.5 * K.sum(1 + w_log_var - K.square(w_mean) - K.exp(w_log_var), axis=-1)
#print xent_loss, ssim_loss, kl_loss
return K.mean(ssim_loss + kl_loss)
def call(self, inputs):
x = inputs[0]
x_decoded_mean = inputs[1]
loss = self.vae_loss(x, x_decoded_mean)
#loss = self.vae_cos_loss(x, x_decoded_mean)
#loss = self.vae_frac_loss(x, x_decoded_mean)
#loss = self.vae_ssim_loss(x, x_decoded_mean)
self.add_loss(loss, inputs=inputs)
# We won't actually use the output.
return x
def vae_loss(x_in, x_out):
x = x_in[0]
x_decoded_mean = x_out
xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean)
kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
#kl_loss_w = - 0.5 * K.sum(1 + w_log_var - K.square(w_mean) - K.exp(w_log_var), axis=-1)
#kl_loss_w = - 0.5 * K.sum(1 + w_log_var - K.square(w_mean) - K.exp(w_log_var), axis=-1)
#kl_loss = tf.Print(kl_loss,
# [K.get_variable_shape(xent_loss)],
# 'xent ssim ')
return K.mean(xent_loss + kl_loss)# + kl_loss_w)
y = CustomVariationalLayer()([x, x_decoded_mean])
#vae = Model([x, noise], x)
vae = Model([x, noise], y)
rmsprop = RMSprop()
vae.compile(optimizer='rmsprop', loss=None)#vae_loss)
x_train = x_train0.astype('float32') / 255.
x_test = x_test0.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
y_train = y_train0
y_test = y_test0
noise_train = np.random.randn(len(x_train0),latent_dim_w)
noise_test = np.random.randn(len(x_test0),latent_dim_w)
#x_train = [ [x1,v1] for x1,v1 in zip(x_train,noise_train) ]
#x_test = [ [x1,v1] for x1,v1 in zip(x_test,noise_test) ]
x_train_c = [x_train, noise_train]
x_test_c = [x_test, noise_test]
vae.fit(x_train_c,
shuffle=True,
epochs=epochs,
verbose=2,
batch_size=batch_size,
validation_data=(x_test_c, x_test))
# build a model to project inputs on the latent space
encoder = Model([x, noise], z_mean)
## ( todo separator ) display a 2D plot of the digit classes in the latent space
x_test_encoded = encoder.predict([x_test, noise_test], batch_size=batch_size)
plt.figure(figsize=(6, 6))
# first item in y is H, second is kurtosis
# next 10 are phase related
z = np.polyfit(range(10),np.log(1+y_test[:,2:]).T,deg=2)
latdisp = [0, 2]
plt.scatter(x_test_encoded[:, latdisp[0]], x_test_encoded[:, latdisp[1]], c=z[2,:], lw=0, s=8)
#plt.scatter(x_test_encoded[:, 0], z[2,:], lw=0, s=8)
#plt.scatter(x_test_encoded[:, latdisp[0]], x_test_encoded[:, latdisp[1]], c=np.mean(y_test[:,2:4],axis=1),lw=0,s=8)
#plt.scatter(x_test_encoded[:, latdisp[0]], x_test_encoded[:, latdisp[1]], c=np.log(y_test[:,1]),lw=0,s=8)
#plt.scatter(x_test_encoded[:, latdisp[0]], x_test_encoded[:, latdisp[1]], c=y_test[:,1],lw=0,s=8)
#plt.scatter(x_test_encoded[:,3], y_test,lw=0,s=8)
plt.xlabel('Latent variable %d'%latdisp[0])
plt.ylabel('Latent variable %d'%latdisp[1])
plt.colorbar()
plt.show()
#plt.savefig('exp_fbm_lat.pdf')
## todo separation line
# build a digit generator that can sample from the learned distribution
decoder_input = Input(shape=(latent_dim,))
decoder_input_w = Input(shape=(latent_dim_w,))
#_h_decoded = decoder_h(decoder_input)
#_x_decoded_mean = decoder_mean(_h_decoded)
_z_cond = merge([decoder_input, decoder_input_w],mode='concat',concat_axis=1)
_x_decoded_mean, _ = use_decoder(_z_cond,units)
generator = Model([decoder_input, decoder_input_w], _x_decoded_mean)
# display a 2D manifold of the digits
n = 100 # figure with 15x15 digits
digit_size = int(np.sqrt(original_dim))
figure = np.zeros((digit_size * n, digit_size * n))
# linearly spaced coordinates on the unit square were transformed through the inverse CDF (ppf) of the Gaussian
# to produce values of the latent variables z, since the prior of the latent space is Gaussian
h_figure = np.zeros((n,n,3))
grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
grid_y = norm.ppf(np.linspace(0.05, 0.95, n))
figure2 = np.zeros((digit_size * n, digit_size * n))
example_imgs = np.zeros((digit_size, digit_size,6))
example_Hs_ind = 0
example_imgs_stats = np.zeros((6,3))
def mat2gray(x):
x = x - np.min(x)
x = x / np.max(x)
return x
for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):
mani_pos = [0,1]
z_sample = np.random.randn(1,latent_dim)
z_sample[:,mani_pos] = [xi,yi]
#z_sample = np.array(np.hstack([ [[xi, yi]],np.random.randn(1,latent_dim-2) ]))*1
w_sample = np.random.randn(1,latent_dim_w)*1
# randomize w instead of z as the manifold parameters
# here we should see a disoriented behaviour
#z_sample = np.random.randn(1,latent_dim)*1
#w_sample = np.concatenate([np.array([[xi, yi]]), [np.random.randn(latent_dim_w-2)*1]],axis=1)
x_decoded = generator.predict([z_sample,w_sample])
digit = x_decoded[0].reshape(digit_size, digit_size)
h_est = fbm_data.hurst2d(digit,max_tau=5)
grad = np.gradient(digit)
kurt = kurtosis(grad[0][2:-1,2:-1].flatten())
#kurt = kurtosis(grad[0][2:-1,2:-1].flatten())
hh, r2 = h_est
h_figure[i,j,:] = np.array([hh, r2, kurt])
hh_entry = int(hh*10)-3
if hh_entry>=0 and hh_entry<6:
example_imgs[:,:,hh_entry] = mat2gray(digit)
example_imgs_stats[hh_entry,:] = [hh, r2, kurt]
if hh<0.5:# and False:
plt.hold(False)
plt.imshow(digit,interpolation='none')
plt.title('H=%f, R^2=%f'%(hh,r2))
plt.show()
plt.pause(0.2)
#raw_input('bla')
figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size] = mat2gray(digit)
# get also random images from the dataset
rr = np.random.randint(0,x_train.shape[0])
digit2 = np.reshape(x_train[rr,:],[original_dim2,original_dim2])
figure2[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size] = mat2gray(digit2)
#plt.figure(figsize=(10, 10))
figure=figure-np.min(figure)
figure=figure/np.max(figure)
_,pp=plt.subplots(2,2)
pp[0,0].imshow(figure, cmap='gray',interpolation='none')
#pp[1,1].imshow(figure2, cmap='gray',interpolation='none')
#.show()
## (todo separator) display several examples
example_im = np.vstack(np.transpose(example_imgs,[2,0,1])).T
plt.imshow(example_im,interpolation='none',cmap='gray')
print example_imgs_stats
imsave('syn_fbms.png',imresize(example_im,example_im.shape*4,interp='nearest'))
## ( todo separator ) display h values
plt.figure(1)
plt.clf()
plt.imshow(h_figure[:,:,0],cmap='gray',interpolation='none',
extent= [ grid_x[0], grid_x[-1] ,grid_y[0], grid_y[-1]] )
plt.xlabel('Latent variable 0')
plt.ylabel('Latent variable 1')
plt.colorbar()
plt.colorbar(res,ax=pp[0,1])
plt.savefig('exp_fbm_syn_h.pdf')
## ( todo separator )
res=pp[1,0].imshow(h_figure[:,:,1],cmap='gray',interpolation='none')
plt.colorbar(res,ax=pp[1,0])
pp[1,0].set_title('R^2')
res=pp[1,1].imshow(h_figure[:,:,2],cmap='gray',interpolation='none')
plt.colorbar(res,ax=pp[1,1])
pp[1,1].set_title('Kurtosis')
## ( todo separator ) show scatter of K vs H
plt.figure(1,figsize=(8,5))
plt.hold(False)
plt.scatter(h_figure[:,:,0].flatten(),
h_figure[:,:,2].flatten(),
#c=h_figure[:,:,1].flatten() ,
lw=0,s=8)
plt.xlabel('H')
plt.ylabel('Kurtosis')
plt.savefig('exp_fbm_syn1.pdf')
#plt.colorbar(format='%1.2e')
plt.show()