forked from ZoelefackReynaNk/Computer_Vision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_recognition.py
64 lines (51 loc) · 1.97 KB
/
face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#face recognition using keras and tensor flow..
#we trained model online and exported code to here
from keras.model import load_model
from PIL import Image, ImageOps
import numpy as np
import cv2
from email.mime import image
cap = cv2.VideoCapture(0)
# Load the model
model = load_model('keras_model.h5')
#load labels
with open('labels.txt','r') as f:
class_names = f.read().split('\n')
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
storage_size=(frame_width, frame_height)
result=cv2.VideoWriter('', cv2.VideoWriter_fourcc(*'MJPG'), 10, storage_size)
while True:
_, image = cap.read()
# Create the array of the right shape to feed into the keras model
# The 'length' or number of images you can put into the array is
# determined by the first position in the shape tuple, in this case 1.
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# Replace this with the path to your image
#resize the image to a 224x224 with the same strategy as in TM2:
#resizing the image to be at least 224x224 and then cropping from the center
size = (224, 224)
image_PIL = Image.fromarray(image)
image = ImageOps.fit(image_PIL, size, Image.Resampling.LANCZOS)
#turn the image into a numpy array
image_array = np.asarray(image)
# Normalize the image
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
# Load the image into the array
data[0] = normalized_image_array
# run the inference
prediction = model.predict(data)
print(prediction)
index = np.argmax(prediction)
class_name = class_names[index]
confidence_score =prediction
print("class:", class_name)
print("confidence score:", confidence_score)
cv2.putText(image,str(class_name),(10,70),cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0), None)
cv2.imshow("nestor", image)
key=cv2.waitKey(1)
if key == ord('q'):
break
image.release()
result.release()
cv2.destroyAllWindows