-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuMF.py
45 lines (37 loc) · 1.8 KB
/
NeuMF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import torch.nn as nn
from MLP import MLP
from GMF import GMF
class NeuMF(nn.Module):
def __init__(self, num_users, num_items, num_factors, num_layers, neumf, use_pretrain, pretrained_GMF, pretrained_MLP):
super(NeuMF, self).__init__()
"""
num_users : number of users
num_items : number of items
num_factors : number of predictive factors
num_layers : number of hidden layers in MLP Model
neumf : True(Fusion MLP&GMF)/False(Only MLP)
"""
self.use_pretrain = use_pretrain
self.pretrained_GMF = pretrained_GMF
self.pretrained_MLP = pretrained_MLP
self.GMF = GMF(num_users, num_items, num_factors, use_pretrain, neumf, pretrained_GMF)
self.MLP = MLP(num_users, num_items, num_factors, num_layers, use_pretrain, neumf, pretrained_MLP)
self.predict_layer = nn.Linear(num_factors*2, 1)
self.sigmoid = nn.Sigmoid()
if use_pretrain:
predict_weight = torch.cat([
self.pretrained_GMF.predict_layer.weight,
self.pretrained_MLP.predict_layer.weight], dim=1)
predict_bias = self.pretrained_GMF.predict_layer.bias + \
self.pretrained_MLP.predict_layer.bias
self.predict_layer.weight.data.copy_(0.5 * predict_weight)
self.predict_layer.bias.data.copy_(0.5 * predict_bias)
else:
# weight 초기화
nn.init.normal_(self.predict_layer.weight, mean=0.0, std=0.01)
def forward(self, users, items):
concat_layer = torch.cat([self.MLP(users, items), self.GMF(users, items)], dim=-1)
output_NeuMF = self.predict_layer(concat_layer)
output_NeuMF = self.sigmoid(output_NeuMF)
return output_NeuMF.view(-1)