-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
131 lines (106 loc) · 5.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
import argparse
import time
from data_utils import Download_read_csv, MovieLens
from evaluate import metrics
from MLP import MLP
from GMF import GMF
from NeuMF import NeuMF
############################# CONFIGURATION #############################
#os.environ['KMP_DUPLICATE_LIB_OK']=''
#os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('device:', device)
parser = argparse.ArgumentParser(description='Select Parameters')
parser.add_argument('-m', '--model_name', type=str, default='MLP', help='select among the following model: [MLP, GMF, NeuMF]')
parser.add_argument('-nf', '--num_factors', type=int, default=8, help='number of predictive factors: [8, 16, 32, 64]')
parser.add_argument('-nl', '--num_layers', type=int, default=3, help='number of hidden layers in MLP Model: [0, 1, 2, 3, 4]')
parser.add_argument('-b', '--batch', type=int, default=256, help='batch size: [128, 256, 512, 1024]')
parser.add_argument('-e', '--epochs', type=int, default=20, help='number of epochs')
parser.add_argument('-lr', '--learning_rate', type=float, default=1e-3, help='learning rate: [0.0001, 0.0005, 0.001, 0.005]')
parser.add_argument('-tk', '--top_k', type=int, default=10)
parser.add_argument('-pr', '--use_pretrain', type=str, default='False', help='use pretrained model or not')
parser.add_argument('-save', '--save_model', type=str, default='False', help='save trained model or not')
args = parser.parse_args()
print('Model Name: ', format(args.model_name))
# argparse doesn't support boolean type
use_pretrain = True if args.use_pretrain == 'True' else False
save_model = True if args.save_model == 'True' else False
pretrain_dir = 'pretrain'
if not os.path.exists(pretrain_dir):
os.makedirs(pretrain_dir)
############################## PREPARE DATASET ##########################
root_path = "dataset"
file_name = "ml-latest-small"
file_type = ".zip"
data = Download_read_csv(root=root_path, filename=file_name, filetype=file_type, download=True)
total_ratings = data.read_ratings_csv()
print("ratings.csv Read Complete")
train_ratings, test_ratings = data.data_processing()
# 각각 Dataset 객체 할당
train_data = MovieLens(total_ratings=total_ratings, ratings=train_ratings, ng_num=4)
test_data = MovieLens(total_ratings=total_ratings, ratings=test_ratings, ng_num=99)
# user, item의 unique 개수 불러오기
num_users, num_items = train_data.get_num()
# Datasetloader
train_dataloader = DataLoader(dataset=train_data, batch_size=args.batch, shuffle=True, num_workers=4)
test_dataloader = DataLoader(dataset=test_data, batch_size=100, shuffle=False, num_workers=0)
########################### CREATE MODEL #################################
if args.model_name == 'NeuMF':
neumf = True
else:
neumf = False
if args.model_name == 'MLP':
model = MLP(num_users=num_users, num_items=num_items, num_factors=args.num_factors, num_layers=args.num_layers, use_pretrain=use_pretrain, neumf=neumf)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
elif args.model_name == 'GMF':
model = GMF(num_users=num_users, num_items=num_items, num_factors=args.num_factors, use_pretrain=use_pretrain, neumf=neumf)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
elif args.model_name == 'NeuMF':
if use_pretrain:
GMF_dir = os.path.join(pretrain_dir, 'GMF.pth')
MLP_dir = os.path.join(pretrain_dir, 'MLP.pth')
pretrained_GMF = torch.load(GMF_dir)
pretrained_MLP = torch.load(MLP_dir)
# 신경망의 모든 매개변수를 고정합니다
for param in pretrained_GMF.parameters():
param.requires_grad = False
for param in pretrained_MLP.parameters():
param.requires_grad = False
else:
pretrained_GMF = None
pretrained_MLP = None
model = NeuMF(num_users=num_users, num_items=num_items, num_factors=args.num_factors, num_layers=args.num_layers, neumf=neumf, use_pretrain=use_pretrain, pretrained_GMF=pretrained_GMF, pretrained_MLP=pretrained_MLP)
if not use_pretrain:
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
else:
optimizer = optim.SGD(model.parameters(), lr=args.learning_rate)
model.to(device)
# loss function is Binary Cross Entropy Loss
loss_function = nn.BCELoss()
########################### TRAINING #####################################
start = time.time()
for epoch in range(args.epochs):
for user, item, label in train_dataloader:
user = user.to(device)
item = item.to(device)
label = label.float().to(device)
# gradient 초기화
#model.zero_grad()
optimizer.zero_grad()
prediction = model(user, item)
loss = loss_function(prediction, label)
loss.backward()
optimizer.step()
HR, NDCG = metrics(model=model, test_loader=test_dataloader, top_k=args.top_k, device=device)
print("epoch: {}\tHR: {:.3f}\tNDCG: {:.3f}".format(epoch+1, np.mean(HR), np.mean(NDCG)))
if save_model:
pretrain_model_dir = os.path.join(pretrain_dir, args.model_name+'.pth')
torch.save(model, pretrain_model_dir)
end = time.time()
print(f'Training Time: {end-start:.5f}')