forked from mozilla/mozjpeg
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathjcparam.c
991 lines (893 loc) · 33.2 KB
/
jcparam.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
/*
* jcparam.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1998, Thomas G. Lane.
* Modified 2003-2008 by Guido Vollbeding.
* libjpeg-turbo Modifications:
* Copyright (C) 2009-2011, 2018, D. R. Commander.
* mozjpeg Modifications:
* Copyright (C) 2014, Mozilla Corporation.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains optional default-setting code for the JPEG compressor.
* Applications do not have to use this file, but those that don't use it
* must know a lot more about the innards of the JPEG code.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jstdhuff.c"
/*
* Quantization table setup routines
*/
GLOBAL(void)
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
const unsigned int *basic_table, int scale_factor,
boolean force_baseline)
/* Define a quantization table equal to the basic_table times
* a scale factor (given as a percentage).
* If force_baseline is TRUE, the computed quantization table entries
* are limited to 1..255 for JPEG baseline compatibility.
*/
{
JQUANT_TBL **qtblptr;
int i;
long temp;
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
if (*qtblptr == NULL)
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
for (i = 0; i < DCTSIZE2; i++) {
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
/* limit the values to the valid range */
if (temp <= 0L) temp = 1L;
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
if (force_baseline && temp > 255L)
temp = 255L; /* limit to baseline range if requested */
(*qtblptr)->quantval[i] = (UINT16) temp;
}
/* Initialize sent_table FALSE so table will be written to JPEG file. */
(*qtblptr)->sent_table = FALSE;
}
/* These are the sample quantization tables given in Annex K (Clause K.1) of
* Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
* The spec says that the values given produce "good" quality, and
* when divided by 2, "very good" quality.
*/
static const unsigned int std_luminance_quant_tbl[9][DCTSIZE2] = {
{
/* JPEG Annex K
*/
16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 55, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99
},
{
/* flat
*/
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16
},
{
12, 17, 20, 21, 30, 34, 56, 63,
18, 20, 20, 26, 28, 51, 61, 55,
19, 20, 21, 26, 33, 58, 69, 55,
26, 26, 26, 30, 46, 87, 86, 66,
31, 33, 36, 40, 46, 96, 100, 73,
40, 35, 46, 62, 81, 100, 111, 91,
46, 66, 76, 86, 102, 121, 120, 101,
68, 90, 90, 96, 113, 102, 105, 103
},
{
/* From http://www.imagemagick.org/discourse-server/viewtopic.php?f=22&t=20333&p=98008#p98008
*/
16, 16, 16, 18, 25, 37, 56, 85,
16, 17, 20, 27, 34, 40, 53, 75,
16, 20, 24, 31, 43, 62, 91, 135,
18, 27, 31, 40, 53, 74, 106, 156,
25, 34, 43, 53, 69, 94, 131, 189,
37, 40, 62, 74, 94, 124, 169, 238,
56, 53, 91, 106, 131, 169, 226, 311,
85, 75, 135, 156, 189, 238, 311, 418
},
{
9, 10, 12, 14, 27, 32, 51, 62,
11, 12, 14, 19, 27, 44, 59, 73,
12, 14, 18, 25, 42, 59, 79, 78,
17, 18, 25, 42, 61, 92, 87, 92,
23, 28, 42, 75, 79, 112, 112, 99,
40, 42, 59, 84, 88, 124, 132, 111,
42, 64, 78, 95, 105, 126, 125, 99,
70, 75, 100, 102, 116, 100, 107, 98
},
{
/* Relevance of human vision to JPEG-DCT compression (1992) Klein, Silverstein and Carney.
*/
10, 12, 14, 19, 26, 38, 57, 86,
12, 18, 21, 28, 35, 41, 54, 76,
14, 21, 25, 32, 44, 63, 92, 136,
19, 28, 32, 41, 54, 75, 107, 157,
26, 35, 44, 54, 70, 95, 132, 190,
38, 41, 63, 75, 95, 125, 170, 239,
57, 54, 92, 107, 132, 170, 227, 312,
86, 76, 136, 157, 190, 239, 312, 419
},
{
/* DCTune perceptual optimization of compressed dental X-Rays (1997) Watson, Taylor, Borthwick
*/
7, 8, 10, 14, 23, 44, 95, 241,
8, 8, 11, 15, 25, 47, 102, 255,
10, 11, 13, 19, 31, 58, 127, 255,
14, 15, 19, 27, 44, 83, 181, 255,
23, 25, 31, 44, 72, 136, 255, 255,
44, 47, 58, 83, 136, 255, 255, 255,
95, 102, 127, 181, 255, 255, 255, 255,
241, 255, 255, 255, 255, 255, 255, 255
},
{
/* A visual detection model for DCT coefficient quantization (12/9/93) Ahumada, Watson, Peterson
*/
15, 11, 11, 12, 15, 19, 25, 32,
11, 13, 10, 10, 12, 15, 19, 24,
11, 10, 14, 14, 16, 18, 22, 27,
12, 10, 14, 18, 21, 24, 28, 33,
15, 12, 16, 21, 26, 31, 36, 42,
19, 15, 18, 24, 31, 38, 45, 53,
25, 19, 22, 28, 36, 45, 55, 65,
32, 24, 27, 33, 42, 53, 65, 77
},
{
/* An improved detection model for DCT coefficient quantization (1993) Peterson, Ahumada and Watson
*/
14, 10, 11, 14, 19, 25, 34, 45,
10, 11, 11, 12, 15, 20, 26, 33,
11, 11, 15, 18, 21, 25, 31, 38,
14, 12, 18, 24, 28, 33, 39, 47,
19, 15, 21, 28, 36, 43, 51, 59,
25, 20, 25, 33, 43, 54, 64, 74,
34, 26, 31, 39, 51, 64, 77, 91,
45, 33, 38, 47, 59, 74, 91, 108
}
};
static const unsigned int std_chrominance_quant_tbl[9][DCTSIZE2] = {
{
/* JPEG Annex K
*/
17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
},
{
/* flat
*/
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16
},
{
8, 12, 15, 15, 86, 96, 96, 98,
13, 13, 15, 26, 90, 96, 99, 98,
12, 15, 18, 96, 99, 99, 99, 99,
17, 16, 90, 96, 99, 99, 99, 99,
96, 96, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
},
{
/* From http://www.imagemagick.org/discourse-server/viewtopic.php?f=22&t=20333&p=98008#p98008
*/
16, 16, 16, 18, 25, 37, 56, 85,
16, 17, 20, 27, 34, 40, 53, 75,
16, 20, 24, 31, 43, 62, 91, 135,
18, 27, 31, 40, 53, 74, 106, 156,
25, 34, 43, 53, 69, 94, 131, 189,
37, 40, 62, 74, 94, 124, 169, 238,
56, 53, 91, 106, 131, 169, 226, 311,
85, 75, 135, 156, 189, 238, 311, 418
},
{
9, 10, 17, 19, 62, 89, 91, 97,
12, 13, 18, 29, 84, 91, 88, 98,
14, 19, 29, 93, 95, 95, 98, 97,
20, 26, 84, 88, 95, 95, 98, 94,
26, 86, 91, 93, 97, 99, 98, 99,
99, 100, 98, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
97, 97, 99, 99, 99, 99, 97, 99
},
{
/* Relevance of human vision to JPEG-DCT compression (1992) Klein, Silverstein and Carney.
* Copied from luma
*/
10, 12, 14, 19, 26, 38, 57, 86,
12, 18, 21, 28, 35, 41, 54, 76,
14, 21, 25, 32, 44, 63, 92, 136,
19, 28, 32, 41, 54, 75, 107, 157,
26, 35, 44, 54, 70, 95, 132, 190,
38, 41, 63, 75, 95, 125, 170, 239,
57, 54, 92, 107, 132, 170, 227, 312,
86, 76, 136, 157, 190, 239, 312, 419
},
{
/* DCTune perceptual optimization of compressed dental X-Rays (1997) Watson, Taylor, Borthwick
* Copied from luma
*/
7, 8, 10, 14, 23, 44, 95, 241,
8, 8, 11, 15, 25, 47, 102, 255,
10, 11, 13, 19, 31, 58, 127, 255,
14, 15, 19, 27, 44, 83, 181, 255,
23, 25, 31, 44, 72, 136, 255, 255,
44, 47, 58, 83, 136, 255, 255, 255,
95, 102, 127, 181, 255, 255, 255, 255,
241, 255, 255, 255, 255, 255, 255, 255
},
{
/* A visual detection model for DCT coefficient quantization (12/9/93) Ahumada, Watson, Peterson
* Copied from luma
*/
15, 11, 11, 12, 15, 19, 25, 32,
11, 13, 10, 10, 12, 15, 19, 24,
11, 10, 14, 14, 16, 18, 22, 27,
12, 10, 14, 18, 21, 24, 28, 33,
15, 12, 16, 21, 26, 31, 36, 42,
19, 15, 18, 24, 31, 38, 45, 53,
25, 19, 22, 28, 36, 45, 55, 65,
32, 24, 27, 33, 42, 53, 65, 77
},
{
/* An improved detection model for DCT coefficient quantization (1993) Peterson, Ahumada and Watson
* Copied from luma
*/
14, 10, 11, 14, 19, 25, 34, 45,
10, 11, 11, 12, 15, 20, 26, 33,
11, 11, 15, 18, 21, 25, 31, 38,
14, 12, 18, 24, 28, 33, 39, 47,
19, 15, 21, 28, 36, 43, 51, 59,
25, 20, 25, 33, 43, 54, 64, 74,
34, 26, 31, 39, 51, 64, 77, 91,
45, 33, 38, 47, 59, 74, 91, 108
}
};
#if JPEG_LIB_VERSION >= 70
GLOBAL(void)
jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
/* Set or change the 'quality' (quantization) setting, using default tables
* and straight percentage-scaling quality scales.
* This entry point allows different scalings for luminance and chrominance.
*/
{
/* Set up two quantization tables using the specified scaling */
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl[cinfo->master->quant_tbl_master_idx],
cinfo->q_scale_factor[0], force_baseline);
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl[cinfo->master->quant_tbl_master_idx],
cinfo->q_scale_factor[1], force_baseline);
}
#endif
GLOBAL(void)
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
boolean force_baseline)
/* Set or change the 'quality' (quantization) setting, using default tables
* and a straight percentage-scaling quality scale. In most cases it's better
* to use jpeg_set_quality (below); this entry point is provided for
* applications that insist on a linear percentage scaling.
*/
{
/* Set up two quantization tables using the specified scaling */
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl[cinfo->master->quant_tbl_master_idx],
scale_factor, force_baseline);
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl[cinfo->master->quant_tbl_master_idx],
scale_factor, force_baseline);
}
GLOBAL(int)
jpeg_quality_scaling (int quality)
{
return jpeg_float_quality_scaling(quality);
}
GLOBAL(float)
jpeg_float_quality_scaling(float quality)
/* Convert a user-specified quality rating to a percentage scaling factor
* for an underlying quantization table, using our recommended scaling curve.
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
*/
{
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
if (quality <= 0.f) quality = 1.f;
if (quality > 100.f) quality = 100.f;
/* The basic table is used as-is (scaling 100) for a quality of 50.
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
* to make all the table entries 1 (hence, minimum quantization loss).
* Qualities 1..50 are converted to scaling percentage 5000/Q.
*/
if (quality < 50.f)
quality = 5000.f / quality;
else
quality = 200.f - quality*2.f;
return quality;
}
GLOBAL(void)
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
/* Set or change the 'quality' (quantization) setting, using default tables.
* This is the standard quality-adjusting entry point for typical user
* interfaces; only those who want detailed control over quantization tables
* would use the preceding three routines directly.
*/
{
/* Convert user 0-100 rating to percentage scaling */
quality = jpeg_quality_scaling(quality);
/* Set up standard quality tables */
jpeg_set_linear_quality(cinfo, quality, force_baseline);
}
/*
* Default parameter setup for compression.
*
* Applications that don't choose to use this routine must do their
* own setup of all these parameters. Alternately, you can call this
* to establish defaults and then alter parameters selectively. This
* is the recommended approach since, if we add any new parameters,
* your code will still work (they'll be set to reasonable defaults).
*/
GLOBAL(void)
jpeg_set_defaults (j_compress_ptr cinfo)
{
int i;
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Allocate comp_info array large enough for maximum component count.
* Array is made permanent in case application wants to compress
* multiple images at same param settings.
*/
if (cinfo->comp_info == NULL)
cinfo->comp_info = (jpeg_component_info *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
MAX_COMPONENTS * sizeof(jpeg_component_info));
/* Initialize everything not dependent on the color space */
#if JPEG_LIB_VERSION >= 70
cinfo->scale_num = 1; /* 1:1 scaling */
cinfo->scale_denom = 1;
#endif
cinfo->data_precision = BITS_IN_JSAMPLE;
/* Set up two quantization tables using default quality of 75 */
jpeg_set_quality(cinfo, 75, TRUE);
/* Set up two Huffman tables */
std_huff_tables((j_common_ptr) cinfo);
/* Initialize default arithmetic coding conditioning */
for (i = 0; i < NUM_ARITH_TBLS; i++) {
cinfo->arith_dc_L[i] = 0;
cinfo->arith_dc_U[i] = 1;
cinfo->arith_ac_K[i] = 5;
}
/* Default is no multiple-scan output */
cinfo->scan_info = NULL;
cinfo->num_scans = 0;
/* Expect normal source image, not raw downsampled data */
cinfo->raw_data_in = FALSE;
/* Use Huffman coding, not arithmetic coding, by default */
cinfo->arith_code = FALSE;
#ifdef ENTROPY_OPT_SUPPORTED
if (cinfo->master->compress_profile == JCP_MAX_COMPRESSION)
/* By default, do extra passes to optimize entropy coding */
cinfo->optimize_coding = TRUE;
else
/* By default, don't do extra passes to optimize entropy coding */
cinfo->optimize_coding = FALSE;
#else
/* By default, don't do extra passes to optimize entropy coding */
cinfo->optimize_coding = FALSE;
#endif
/* The standard Huffman tables are only valid for 8-bit data precision.
* If the precision is higher, force optimization on so that usable
* tables will be computed. This test can be removed if default tables
* are supplied that are valid for the desired precision.
*/
if (cinfo->data_precision > 8)
cinfo->optimize_coding = TRUE;
/* By default, use the simpler non-cosited sampling alignment */
cinfo->CCIR601_sampling = FALSE;
#if JPEG_LIB_VERSION >= 70
/* By default, apply fancy downsampling */
cinfo->do_fancy_downsampling = TRUE;
#endif
cinfo->master->overshoot_deringing =
cinfo->master->compress_profile == JCP_MAX_COMPRESSION;
/* No input smoothing */
cinfo->smoothing_factor = 0;
/* DCT algorithm preference */
cinfo->dct_method = JDCT_DEFAULT;
/* No restart markers */
cinfo->restart_interval = 0;
cinfo->restart_in_rows = 0;
/* Fill in default JFIF marker parameters. Note that whether the marker
* will actually be written is determined by jpeg_set_colorspace.
*
* By default, the library emits JFIF version code 1.01.
* An application that wants to emit JFIF 1.02 extension markers should set
* JFIF_minor_version to 2. We could probably get away with just defaulting
* to 1.02, but there may still be some decoders in use that will complain
* about that; saying 1.01 should minimize compatibility problems.
*/
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
cinfo->JFIF_minor_version = 1;
cinfo->density_unit = 0; /* Pixel size is unknown by default */
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
cinfo->Y_density = 1;
/* Choose JPEG colorspace based on input space, set defaults accordingly */
jpeg_default_colorspace(cinfo);
cinfo->master->dc_scan_opt_mode = 0;
#ifdef C_PROGRESSIVE_SUPPORTED
if (cinfo->master->compress_profile == JCP_MAX_COMPRESSION) {
cinfo->master->optimize_scans = TRUE;
jpeg_simple_progression(cinfo);
} else
cinfo->master->optimize_scans = FALSE;
#endif
cinfo->master->trellis_quant =
cinfo->master->compress_profile == JCP_MAX_COMPRESSION;
cinfo->master->lambda_log_scale1 = 14.75;
cinfo->master->lambda_log_scale2 = 16.5;
cinfo->master->quant_tbl_master_idx =
cinfo->master->compress_profile == JCP_MAX_COMPRESSION ? 3 : 0;
cinfo->master->use_lambda_weight_tbl = TRUE;
cinfo->master->use_scans_in_trellis = FALSE;
cinfo->master->trellis_freq_split = 8;
cinfo->master->trellis_num_loops = 1;
cinfo->master->trellis_q_opt = FALSE;
cinfo->master->trellis_quant_dc = TRUE;
cinfo->master->trellis_delta_dc_weight = 0.0;
}
/*
* Select an appropriate JPEG colorspace for in_color_space.
*/
GLOBAL(void)
jpeg_default_colorspace (j_compress_ptr cinfo)
{
switch (cinfo->in_color_space) {
case JCS_GRAYSCALE:
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
break;
case JCS_RGB:
case JCS_EXT_RGB:
case JCS_EXT_RGBX:
case JCS_EXT_BGR:
case JCS_EXT_BGRX:
case JCS_EXT_XBGR:
case JCS_EXT_XRGB:
case JCS_EXT_RGBA:
case JCS_EXT_BGRA:
case JCS_EXT_ABGR:
case JCS_EXT_ARGB:
jpeg_set_colorspace(cinfo, JCS_YCbCr);
break;
case JCS_YCbCr:
jpeg_set_colorspace(cinfo, JCS_YCbCr);
break;
case JCS_CMYK:
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
break;
case JCS_YCCK:
jpeg_set_colorspace(cinfo, JCS_YCCK);
break;
case JCS_UNKNOWN:
jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
break;
default:
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
}
}
/*
* Set the JPEG colorspace, and choose colorspace-dependent default values.
*/
GLOBAL(void)
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
{
jpeg_component_info *compptr;
int ci;
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
(compptr = &cinfo->comp_info[index], \
compptr->component_id = (id), \
compptr->h_samp_factor = (hsamp), \
compptr->v_samp_factor = (vsamp), \
compptr->quant_tbl_no = (quant), \
compptr->dc_tbl_no = (dctbl), \
compptr->ac_tbl_no = (actbl) )
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* For all colorspaces, we use Q and Huff tables 0 for luminance components,
* tables 1 for chrominance components.
*/
cinfo->jpeg_color_space = colorspace;
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
switch (colorspace) {
case JCS_GRAYSCALE:
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
cinfo->num_components = 1;
/* JFIF specifies component ID 1 */
SET_COMP(0, 1, 1,1, 0, 0,0);
break;
case JCS_RGB:
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
cinfo->num_components = 3;
SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
break;
case JCS_YCbCr:
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
cinfo->num_components = 3;
/* JFIF specifies component IDs 1,2,3 */
/* We default to 2x2 subsamples of chrominance */
SET_COMP(0, 1, 2,2, 0, 0,0);
SET_COMP(1, 2, 1,1, 1, 1,1);
SET_COMP(2, 3, 1,1, 1, 1,1);
break;
case JCS_CMYK:
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
cinfo->num_components = 4;
SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
break;
case JCS_YCCK:
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
cinfo->num_components = 4;
SET_COMP(0, 1, 2,2, 0, 0,0);
SET_COMP(1, 2, 1,1, 1, 1,1);
SET_COMP(2, 3, 1,1, 1, 1,1);
SET_COMP(3, 4, 2,2, 0, 0,0);
break;
case JCS_UNKNOWN:
cinfo->num_components = cinfo->input_components;
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPONENTS);
for (ci = 0; ci < cinfo->num_components; ci++) {
SET_COMP(ci, ci, 1,1, 0, 0,0);
}
break;
default:
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
}
}
#ifdef C_PROGRESSIVE_SUPPORTED
LOCAL(jpeg_scan_info *)
fill_a_scan(jpeg_scan_info *scanptr, int ci, int Ss, int Se, int Ah, int Al)
/* Support routine: generate one scan for specified component */
{
scanptr->comps_in_scan = 1;
scanptr->component_index[0] = ci;
scanptr->Ss = Ss;
scanptr->Se = Se;
scanptr->Ah = Ah;
scanptr->Al = Al;
scanptr++;
return scanptr;
}
LOCAL(jpeg_scan_info *)
fill_a_scan_pair (jpeg_scan_info * scanptr, int ci,
int Ss, int Se, int Ah, int Al)
/* Support routine: generate one scan for pair of components */
{
scanptr->comps_in_scan = 2;
scanptr->component_index[0] = ci;
scanptr->component_index[1] = ci + 1;
scanptr->Ss = Ss;
scanptr->Se = Se;
scanptr->Ah = Ah;
scanptr->Al = Al;
scanptr++;
return scanptr;
}
LOCAL(jpeg_scan_info *)
fill_scans (jpeg_scan_info *scanptr, int ncomps,
int Ss, int Se, int Ah, int Al)
/* Support routine: generate one scan for each component */
{
int ci;
for (ci = 0; ci < ncomps; ci++) {
scanptr->comps_in_scan = 1;
scanptr->component_index[0] = ci;
scanptr->Ss = Ss;
scanptr->Se = Se;
scanptr->Ah = Ah;
scanptr->Al = Al;
scanptr++;
}
return scanptr;
}
LOCAL(jpeg_scan_info *)
fill_dc_scans (jpeg_scan_info *scanptr, int ncomps, int Ah, int Al)
/* Support routine: generate interleaved DC scan if possible, else N scans */
{
int ci;
if (ncomps <= MAX_COMPS_IN_SCAN) {
/* Single interleaved DC scan */
scanptr->comps_in_scan = ncomps;
for (ci = 0; ci < ncomps; ci++)
scanptr->component_index[ci] = ci;
scanptr->Ss = scanptr->Se = 0;
scanptr->Ah = Ah;
scanptr->Al = Al;
scanptr++;
} else {
/* Noninterleaved DC scan for each component */
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
}
return scanptr;
}
/*
* List of scans to be tested
* cinfo->num_components and cinfo->jpeg_color_space must be correct.
*/
LOCAL(boolean)
jpeg_search_progression (j_compress_ptr cinfo)
{
int ncomps = cinfo->num_components;
int nscans;
jpeg_scan_info * scanptr;
int Al;
int frequency_split[] = { 2, 8, 5, 12, 18 };
int i;
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Figure space needed for script. Calculation must match code below! */
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
/* Custom script for YCbCr color images. */
nscans = 64;
} else if (ncomps == 1) {
nscans = 23;
} else {
cinfo->master->num_scans_luma = 0;
return FALSE;
}
/* Allocate space for script.
* We need to put it in the permanent pool in case the application performs
* multiple compressions without changing the settings. To avoid a memory
* leak if jpeg_simple_progression is called repeatedly for the same JPEG
* object, we try to re-use previously allocated space, and we allocate
* enough space to handle YCbCr even if initially asked for grayscale.
*/
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
cinfo->script_space_size = MAX(nscans, 64);
cinfo->script_space = (jpeg_scan_info *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
cinfo->script_space_size * sizeof(jpeg_scan_info));
}
scanptr = cinfo->script_space;
cinfo->scan_info = scanptr;
cinfo->num_scans = nscans;
cinfo->master->Al_max_luma = 3;
cinfo->master->num_scans_luma_dc = 1;
cinfo->master->num_frequency_splits = 5;
cinfo->master->num_scans_luma =
cinfo->master->num_scans_luma_dc + (3 * cinfo->master->Al_max_luma + 2) +
(2 * cinfo->master->num_frequency_splits + 1);
/* 23 scans for luma */
/* 1 scan for DC */
/* 11 scans to determine successive approximation */
/* 11 scans to determine frequency approximation */
/* after 12 scans need to update following 11 */
/* after 23 scans need to determine which to keep */
/* last 4 done conditionally */
/* luma DC by itself */
if (cinfo->master->dc_scan_opt_mode == 0)
scanptr = fill_dc_scans(scanptr, ncomps, 0, 0);
else
scanptr = fill_dc_scans(scanptr, 1, 0, 0);
scanptr = fill_a_scan(scanptr, 0, 1, 8, 0, 0);
scanptr = fill_a_scan(scanptr, 0, 9, 63, 0, 0);
for (Al = 0; Al < cinfo->master->Al_max_luma; Al++) {
scanptr = fill_a_scan(scanptr, 0, 1, 63, Al+1, Al);
scanptr = fill_a_scan(scanptr, 0, 1, 8, 0, Al+1);
scanptr = fill_a_scan(scanptr, 0, 9, 63, 0, Al+1);
}
scanptr = fill_a_scan(scanptr, 0, 1, 63, 0, 0);
for (i = 0; i < cinfo->master->num_frequency_splits; i++) {
scanptr = fill_a_scan(scanptr, 0, 1, frequency_split[i], 0, 0);
scanptr = fill_a_scan(scanptr, 0, frequency_split[i]+1, 63, 0, 0);
}
if (ncomps == 1) {
cinfo->master->Al_max_chroma = 0;
cinfo->master->num_scans_chroma_dc = 0;
} else {
cinfo->master->Al_max_chroma = 2;
cinfo->master->num_scans_chroma_dc = 3;
/* 41 scans for chroma */
/* chroma DC combined */
scanptr = fill_a_scan_pair(scanptr, 1, 0, 0, 0, 0);
/* chroma DC separate */
scanptr = fill_a_scan(scanptr, 1, 0, 0, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 0, 0, 0, 0);
scanptr = fill_a_scan(scanptr, 1, 1, 8, 0, 0);
scanptr = fill_a_scan(scanptr, 1, 9, 63, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 1, 8, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 9, 63, 0, 0);
for (Al = 0; Al < cinfo->master->Al_max_chroma; Al++) {
scanptr = fill_a_scan(scanptr, 1, 1, 63, Al+1, Al);
scanptr = fill_a_scan(scanptr, 2, 1, 63, Al+1, Al);
scanptr = fill_a_scan(scanptr, 1, 1, 8, 0, Al+1);
scanptr = fill_a_scan(scanptr, 1, 9, 63, 0, Al+1);
scanptr = fill_a_scan(scanptr, 2, 1, 8, 0, Al+1);
scanptr = fill_a_scan(scanptr, 2, 9, 63, 0, Al+1);
}
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 0);
for (i = 0; i < cinfo->master->num_frequency_splits; i++) {
scanptr = fill_a_scan(scanptr, 1, 1, frequency_split[i], 0, 0);
scanptr = fill_a_scan(scanptr, 1, frequency_split[i]+1, 63, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 1, frequency_split[i], 0, 0);
scanptr = fill_a_scan(scanptr, 2, frequency_split[i]+1, 63, 0, 0);
}
}
return TRUE;
}
/*
* Create a recommended progressive-JPEG script.
* cinfo->num_components and cinfo->jpeg_color_space must be correct.
*/
GLOBAL(void)
jpeg_simple_progression (j_compress_ptr cinfo)
{
int ncomps;
int nscans;
jpeg_scan_info *scanptr;
if (cinfo->master->optimize_scans) {
if (jpeg_search_progression(cinfo) == TRUE)
return;
}
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Figure space needed for script. Calculation must match code below! */
ncomps = cinfo->num_components;
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
/* Custom script for YCbCr color images. */
if (cinfo->master->compress_profile == JCP_MAX_COMPRESSION) {
if (cinfo->master->dc_scan_opt_mode == 0) {
nscans = 9; /* 1 DC scan for all components */
} else if (cinfo->master->dc_scan_opt_mode == 1) {
nscans = 11; /* 1 DC scan for each component */
} else {
nscans = 10; /* 1 DC scan for luminance and 1 DC scan for chroma */
}
} else {
nscans = 10; /* 2 DC scans and 8 AC scans */
}
} else {
/* All-purpose script for other color spaces. */
if (cinfo->master->compress_profile == JCP_MAX_COMPRESSION) {
if (ncomps > MAX_COMPS_IN_SCAN)
nscans = 5 * ncomps; /* 2 DC + 4 AC scans per component */
else
nscans = 1 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
} else {
if (ncomps > MAX_COMPS_IN_SCAN)
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
else
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
}
}
/* Allocate space for script.
* We need to put it in the permanent pool in case the application performs
* multiple compressions without changing the settings. To avoid a memory
* leak if jpeg_simple_progression is called repeatedly for the same JPEG
* object, we try to re-use previously allocated space, and we allocate
* enough space to handle YCbCr even if initially asked for grayscale.
*/
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
cinfo->script_space_size = MAX(nscans, 10);
cinfo->script_space = (jpeg_scan_info *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
cinfo->script_space_size * sizeof(jpeg_scan_info));
}
scanptr = cinfo->script_space;
cinfo->scan_info = scanptr;
cinfo->num_scans = nscans;
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
/* Custom script for YCbCr color images. */
if (cinfo->master->compress_profile == JCP_MAX_COMPRESSION) {
/* scan defined in jpeg_scan_rgb.txt in jpgcrush */
/* Initial DC scan */
if (cinfo->master->dc_scan_opt_mode == 0) {
/* 1 DC scan for all components */
scanptr = fill_dc_scans(scanptr, ncomps, 0, 0);
} else if (cinfo->master->dc_scan_opt_mode == 1) {
/* 1 DC scan for each component */
scanptr = fill_a_scan(scanptr, 0, 0, 0, 0, 0);
scanptr = fill_a_scan(scanptr, 1, 0, 0, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 0, 0, 0, 0);
} else {
/* 1 DC scan for luminance and 1 DC scan for chroma */
scanptr = fill_dc_scans(scanptr, 1, 0, 0);
scanptr = fill_a_scan_pair(scanptr, 1, 0, 0, 0, 0);
}
/* Low frequency AC scans */
scanptr = fill_a_scan(scanptr, 0, 1, 8, 0, 2);
scanptr = fill_a_scan(scanptr, 1, 1, 8, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 1, 8, 0, 0);
/* Complete spectral selection for luma AC */
scanptr = fill_a_scan(scanptr, 0, 9, 63, 0, 2);
/* Finish luma AC successive approximation */
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
/* Complete spectral selection for chroma AC */
scanptr = fill_a_scan(scanptr, 1, 9, 63, 0, 0);
scanptr = fill_a_scan(scanptr, 2, 9, 63, 0, 0);
} else {
/* Initial DC scan */
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
/* Initial AC scan: get some luma data out in a hurry */
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
/* Chroma data is too small to be worth expending many scans on */
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
/* Complete spectral selection for luma AC */
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
/* Refine next bit of luma AC */
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
/* Finish DC successive approximation */
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
/* Finish AC successive approximation */
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
/* Luma bottom bit comes last since it's usually largest scan */
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
}
} else {
/* All-purpose script for other color spaces. */
if (cinfo->master->compress_profile == JCP_MAX_COMPRESSION) {
/* scan defined in jpeg_scan_bw.txt in jpgcrush */
/* DC component, no successive approximation */
scanptr = fill_dc_scans(scanptr, ncomps, 0, 0);
/* Successive approximation first pass */
scanptr = fill_scans(scanptr, ncomps, 1, 8, 0, 2);
scanptr = fill_scans(scanptr, ncomps, 9, 63, 0, 2);
/* Successive approximation second pass */
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
/* Successive approximation final pass */
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
} else {
/* Successive approximation first pass */
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
/* Successive approximation second pass */
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
/* Successive approximation final pass */
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
}
}
}
#endif /* C_PROGRESSIVE_SUPPORTED */