diff --git a/FLT/NumberField/AdeleRing.lean b/FLT/NumberField/AdeleRing.lean index 38110b96..2aeaa296 100644 --- a/FLT/NumberField/AdeleRing.lean +++ b/FLT/NumberField/AdeleRing.lean @@ -61,6 +61,11 @@ theorem Rat.AdeleRing.zero_discrete : ∃ U : Set (AdeleRing ℚ), -- h2 says that no prime divides the denominator of x -- so x is an integer -- and the goal is that there exists an integer `y` such that `y = x`. + suffices ∀ p : ℕ, p.Prime → ¬(p ∣ x.den) by + use x.num + rw [← den_eq_one_iff] + contrapose! this + exact ⟨x.den.minFac, Nat.minFac_prime this, Nat.minFac_dvd _⟩ sorry -- issue #254 obtain ⟨y, rfl⟩ := intx simp only [abs_lt] at h1