diff --git a/blueprint/src/chapter/FrobeniusProject.tex b/blueprint/src/chapter/FrobeniusProject.tex index 74ec3f92..62d65b17 100644 --- a/blueprint/src/chapter/FrobeniusProject.tex +++ b/blueprint/src/chapter/FrobeniusProject.tex @@ -116,7 +116,7 @@ \subsection{Examples} their product $a_n\in A$, which becomes $X_n^2$ modulo $Q$, so all of the $X_{i}$ will be algebraically independent in $L/K$ and $X_{i}^2\in K$. -\section{The extension $B/A$.} +\section{The extension \texorpdfstring{$B/A$}{B/A}.} The precise set-up we'll work in is the following. We fix $G$ a finite group acting on $B$ a commutative ring, and we have another commutative ring $A$ such @@ -203,7 +203,7 @@ \section{The extension $B/A$.} \begin{proof} Use $M_b$. \end{proof} -\section{The extension $(B/Q)/(A/P)$.} +\section{The extension \texorpdfstring{$(B/Q)/(A/P)$}{(B/Q)/(A/P)}.} Note that $Q$ is prime, so $B/Q$ is an integral domain and hence nontrivial. Furthermore, all our polynomials are monic and hence nonzero (indeed they @@ -280,7 +280,7 @@ \section{The extension $(B/Q)/(A/P)$.} $X=\beta$ shows that $\beta$ divides $\alpha$. \end{proof} -\section{The extension $L/K$.} +\section{The extension \texorpdfstring{$L/K$}{L/K}.} \begin{theorem} \label{foo1}