diff --git a/FLT/DedekindDomain/FiniteAdeleRing/BaseChange.lean b/FLT/DedekindDomain/FiniteAdeleRing/BaseChange.lean index 2fd17060..6ecd3312 100644 --- a/FLT/DedekindDomain/FiniteAdeleRing/BaseChange.lean +++ b/FLT/DedekindDomain/FiniteAdeleRing/BaseChange.lean @@ -17,6 +17,10 @@ are defined. In this file we define the natural `K`-algebra map `𝔸_K^∞ → the natural `L`-algebra map `𝔸_K^∞ ⊗[K] L → 𝔸_L^∞`, and show that the latter map is an isomorphism. +## Main definition + +* `FiniteAdeleRing.baseChangeEquiv : L ⊗[K] FiniteAdeleRing A K ≃ₐ[L] FiniteAdeleRing B L` + -/ open scoped Multiplicative @@ -48,10 +52,6 @@ example : Module.Finite A B := by have := IsIntegralClosure.isNoetherian A K L B exact Module.IsNoetherian.finite A B -/- -In this generality there's a natural isomorphism `L ⊗[K] 𝔸_K^∞ → 𝔸_L^∞` . --/ - -- We start by filling in some holes in the API for finite extensions of Dedekind domains. namespace IsDedekindDomain