-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrunkperpkpara.py
242 lines (215 loc) · 10.5 KB
/
runkperpkpara.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
import matplotlib
from matplotlib.gridspec import GridSpec
matplotlib.rcParams['text.usetex'] = True
matplotlib.rcParams['text.latex.preamble'] = [r'\usepackage{amsmath}'] #for \text command
import matplotlib.pyplot as plt
import mpl_style
plt.style.use(mpl_style.style1)
matplotlib.rcParams['mathtext.fontset'] = 'stix'
matplotlib.rcParams['font.family'] = 'STIXGeneral'
import cosmotools
cosmotools.SetCosmology('Planck15')
import pktools
import teletools
# Dimension of data cube:
lx,ly,lz = 1000,1000,1000 #Mpc/h
nx,ny,nz = 225,225,225
lzbuff = 119 #Used to achieve a lz=762Mpc/h which is ~Deltaz=0.4 at zeff=0.8
xbins = np.linspace(0,lx,nx+1) #cartesian-z pixel bins
ybins = np.linspace(0,ly,ny+1) #cartesian-z pixel bins
lz = lz - 2*lzbuff
# Cosmological & Survey Parameters:
zeff = 0.82 #Redshift for simulation boz
#zeff = 2.03 #Redshift for simulation boz
d_c = cosmotools.D_com(zeff) #comoving distance to effective redshift
theta_FWHM,R_beam = teletools.getbeampars(zeff,d_c)
#####################################################
# Read-in and Process HI and FG maps #
#####################################################
dT_HI_nobeam = np.load('MultiDarkSims/dT_HI-MDSAGE_z_%s.npy'%zeff)
dT_HI = np.zeros(np.shape(dT_HI_nobeam))
dT_FG = np.load('MultiDarkSims/dT_FG-MDSAGE_z_%s.npy'%zeff)
dT_obs_nobeam = dT_HI_nobeam + dT_FG
dT_obs = np.zeros(np.shape(dT_obs_nobeam))
xbincentres = xbins+(xbins[1]-xbins[0])/2
xbincentres = xbincentres[:len(xbincentres)-1] #remove last value since this is outside of bins
ybincentres = ybins+(ybins[1]-ybins[0])/2
ybincentres = ybincentres[:len(ybincentres)-1] #remove last value since this is outside of bins
#Construct a quasi-redshift range based on lz (z-length) of box for noise map:
d_c = cosmotools.D_com(zeff) #distance to box
ztests = np.linspace(0,10,100) #Build spline to obtain redshifts
d_c_spline = cosmotools.D_com(ztests) # based on lz com-distances
zspline = interp1d(d_c_spline, ztests , kind='cubic')
lzmin = d_c-lz/2
redbins = zspline(lzmin + np.linspace(0,lz,nz+1))
for i in range(nz):
dT_HI[:,:,i] = teletools.smoothimage(dT_HI_nobeam[:,:,i],0,0,lx,ly,xbincentres,ybincentres,R_beam)
dT_obs[:,:,i] = teletools.smoothimage(dT_obs_nobeam[:,:,i],0,0,lx,ly,xbincentres,ybincentres,R_beam)
dT_clean = teletools.FASTICAclean(dT_obs, N_IC=4)
#####################################################
# Measure the auto-power spectrum #
#####################################################
kmin,kmax = 0.005,0.5
nkbin = 50
dk = (kmax-kmin)/nkbin
k = np.linspace(kmin+0.5*dk,kmax-0.5*dk,nkbin)
pkspec = pktools.getpkspec(dT_HI,dT_HI,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkspec_nobeam = pktools.getpkspec(dT_HI_nobeam,dT_HI_nobeam,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkspecFG = pktools.getpkspec(dT_clean,dT_clean,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
W = pktools.W_alias(nx,ny,nz,lx,ly,lz,p=1)
pkspec, pkspec_nobeam, pkspecFG = pkspec/W**2, pkspec_nobeam/W**2, pkspecFG/W**2 # Correct for aliasing
#####################################################
# Perform multipole expansion on power spectrum #
#####################################################
pkmults,nmodes = pktools.binpole(pkspec,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkmults_nobeam,nmodes = pktools.binpole(pkspec_nobeam,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkmultsFG,nmodes = pktools.binpole(pkspecFG,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
#####################################################
# Convert from multipoles to P(kperp,kpar) #
#####################################################
nwedge = 50
pkmu = pktools.pkpoletopkmu(nwedge,pkmults)
pkmu_nobeam = pktools.pkpoletopkmu(nwedge,pkmults_nobeam)
pkmuFG = pktools.pkpoletopkmu(nwedge,pkmultsFG)
kmin2,kmax2 = 0.005,0.3
nk2d = 40
pk2d = pktools.pkmutopk2(kmin2,kmax2,nk2d,kmin,kmax,nkbin,nwedge,pkmu)
pk2d_nobeam = pktools.pkmutopk2(kmin2,kmax2,nk2d,kmin,kmax,nkbin,nwedge,pkmu_nobeam)
pk2dFG = pktools.pkmutopk2(kmin2,kmax2,nk2d,kmin,kmax,nkbin,nwedge,pkmuFG)
#####################################################
# Plot P(kperp,kpara) #
#####################################################
dk = (kmax2-kmin2)/nk2d
k = np.linspace(kmin2+0.5*dk,kmax2-0.5*dk,nk2d)
FGsatcap = 1.5
fontsize=22
plt.figure(figsize=(12,5))
for opt in range(2):
plt.subplot(121+opt)
histmap = np.zeros((nk2d,nk2d))
for i in range(nk2d):
for j in range(nk2d):
if opt==0: histmap[i,j] = pk2d_nobeam[j,i]/pk2d[j,i]
if opt==1:
histmap[i,j] = pk2d[j,i]/pk2dFG[j,i]
histmap[histmap>FGsatcap] = FGsatcap
histmap[histmap<0.8] = 0.8
if opt==0: histmap[np.isnan(histmap)] = 1
if opt==1: histmap[np.isnan(histmap)] = FGsatcap
plt.imshow(histmap,extent=[kmin2,kmax2,kmin2,kmax2],cmap='bone_r')
plt.xlabel(r'$k_\perp \, [h \, {\rm Mpc}^{-1}]$',fontsize=fontsize)
plt.ylabel(r'$k_\parallel \, [h \, {\rm Mpc}^{-1}]$',fontsize=fontsize)
plt.xticks([0.1,0.2,0.3])
plt.yticks([0.1,0.2,0.3])
if opt==0: plt.title(r'$P(k_\parallel,k_\perp)_\text{NoBeam}/P(k_\parallel,k_\perp)_\text{WithBeam}$',fontsize=fontsize-2)
if opt==1: plt.title(r'$P(k_\parallel,k_\perp)_\text{NoFG}/P(k_\parallel,k_\perp)_\text{SubFG}$',fontsize=fontsize-2)
clb = plt.colorbar(fraction=0.1)
clb.ax.tick_params(labelsize=fontsize-2)
if opt==1:
z = (plt.contour(histmap,[1.1, 1.4],extent=[kmin2,kmax2,kmin2,kmax2]))
plt.clabel(z,fmt = '%1.1f')
plt.tick_params(labelsize=fontsize-2)
plt.subplots_adjust(top=0.92,
bottom=0.16,
left=0.07,
right=0.97,
hspace=0.22,
wspace=0.22)
plt.show()
#####################################################
# Same Test but with different N_IC inputs #
#####################################################
dT_clean1 = teletools.FASTICAclean(dT_obs, N_IC=3)
dT_clean2 = teletools.FASTICAclean(dT_obs, N_IC=4)
dT_clean3 = teletools.FASTICAclean(dT_obs, N_IC=6)
dT_clean4 = teletools.FASTICAclean(dT_obs, N_IC=8)
dT_clean5 = teletools.FASTICAclean(dT_obs, N_IC=10)
dT_clean6 = teletools.FASTICAclean(dT_obs, N_IC=12)
#####################################################
# Measure the auto-power spectrum #
#####################################################
kmin,kmax = 0.02,0.5
nkbin = 50
dk = (kmax-kmin)/nkbin
k = np.linspace(kmin+0.5*dk,kmax-0.5*dk,nkbin)
pkspec = pktools.getpkspec(dT_HI,dT_HI,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkspecFG1 = pktools.getpkspec(dT_clean1,dT_clean1,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkspecFG2 = pktools.getpkspec(dT_clean2,dT_clean2,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkspecFG3 = pktools.getpkspec(dT_clean3,dT_clean3,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkspecFG4 = pktools.getpkspec(dT_clean4,dT_clean4,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkspecFG5 = pktools.getpkspec(dT_clean5,dT_clean5,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkspecFG6 = pktools.getpkspec(dT_clean6,dT_clean6,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
W = pktools.W_alias(nx,ny,nz,lx,ly,lz,p=1)
pkspec, pkspecFG1, pkspecFG2, pkspecFG3, pkspecFG4, pkspecFG5, pkspecFG6 = pkspec/W**2, pkspecFG1/W**2, pkspecFG2/W**2, pkspecFG3/W**2, pkspecFG4/W**2, pkspecFG5/W**2, pkspecFG6/W**2 # Correct for aliasing
#####################################################
# Perform multipole expansion on power spectrum #
#####################################################
pkmults,nmodes = pktools.binpole(pkspec,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkmultsFG1,nmodes = pktools.binpole(pkspecFG1,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkmultsFG2,nmodes = pktools.binpole(pkspecFG2,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkmultsFG3,nmodes = pktools.binpole(pkspecFG3,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkmultsFG4,nmodes = pktools.binpole(pkspecFG4,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkmultsFG5,nmodes = pktools.binpole(pkspecFG5,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
pkmultsFG6,nmodes = pktools.binpole(pkspecFG6,nx,ny,nz,lx,ly,lz,kmin,kmax,nkbin)
#####################################################
# Convert from multipoles to P(kperp,kpar) #
#####################################################
nwedge = 50
pkmu = pktools.pkpoletopkmu(nwedge,pkmults)
pkmuFG1 = pktools.pkpoletopkmu(nwedge,pkmultsFG1)
pkmuFG2 = pktools.pkpoletopkmu(nwedge,pkmultsFG2)
pkmuFG3 = pktools.pkpoletopkmu(nwedge,pkmultsFG3)
pkmuFG4 = pktools.pkpoletopkmu(nwedge,pkmultsFG4)
pkmuFG5 = pktools.pkpoletopkmu(nwedge,pkmultsFG5)
pkmuFG6 = pktools.pkpoletopkmu(nwedge,pkmultsFG6)
kmin2,kmax2 = 0.005,0.3
nk2d = 40
pk2d = pktools.pkmutopk2(kmin2,kmax2,nk2d,kmin,kmax,nkbin,nwedge,pkmu)
pk2dFG1 = pktools.pkmutopk2(kmin2,kmax2,nk2d,kmin,kmax,nkbin,nwedge,pkmuFG1)
pk2dFG2 = pktools.pkmutopk2(kmin2,kmax2,nk2d,kmin,kmax,nkbin,nwedge,pkmuFG2)
pk2dFG3 = pktools.pkmutopk2(kmin2,kmax2,nk2d,kmin,kmax,nkbin,nwedge,pkmuFG3)
pk2dFG4 = pktools.pkmutopk2(kmin2,kmax2,nk2d,kmin,kmax,nkbin,nwedge,pkmuFG4)
pk2dFG5 = pktools.pkmutopk2(kmin2,kmax2,nk2d,kmin,kmax,nkbin,nwedge,pkmuFG5)
pk2dFG6 = pktools.pkmutopk2(kmin2,kmax2,nk2d,kmin,kmax,nkbin,nwedge,pkmuFG6)
#####################################################
# Plot P(kperp,kpara) #
#####################################################
dk = (kmax2-kmin2)/nk2d
k = np.linspace(kmin2+0.5*dk,kmax2-0.5*dk,nk2d)
pk2dFGlist = [pk2dFG6,pk2dFG5,pk2dFG4,pk2dFG3,pk2dFG2,pk2dFG1]
FGsatcap = 2
fontsize=22
plt.figure(figsize=(7,4.5))
histmap = np.zeros((nk2d,nk2d))
colors = ['black','brown','r','tomato','lightsalmon','linen']
for FGi in range(6):
pk2dFG = pk2dFGlist[FGi]
for i in range(nk2d):
for j in range(nk2d):
histmap[i,j] = pk2d[j,i]/pk2dFG[j,i]
histmap[histmap>FGsatcap] = FGsatcap
histmap[histmap<0.8] = 0.8
histmap[np.isnan(histmap)] = FGsatcap
z = (plt.contourf(histmap,[1.4,2.9],extent=[kmin2,kmax2,kmin2,kmax2],alpha=0.7,colors=colors[FGi]))
zc = (plt.contour(histmap,[1.4],extent=[kmin2,kmax2,kmin2,kmax2],alpha=0.7,color='black'))
plt.clabel(zc,fmt = '%1.1f')
proxy=[]
for i in range(6):
proxy.append( plt.Rectangle((0,0),1,1, fc=colors[i]) )
plt.legend(proxy, ["$N_\\text{IC}=12$","$N_\\text{IC}=10$","$N_\\text{IC}=8$","$N_\\text{IC}=6$","$N_\\text{IC}=4$","$N_\\text{IC}=3$"],ncol=3,prop={'size': 17},loc='upper center')
plt.xlabel(r'$k_\perp \, [h \, {\rm Mpc}^{-1}]$',fontsize=fontsize)
plt.ylabel(r'$k_\parallel \, [h \, {\rm Mpc}^{-1}]$',fontsize=fontsize)
plt.xticks([0.1,0.2,0.3])
plt.yticks([0.1,0.2,0.3])
plt.title(r'$P(k_\parallel,k_\perp)_\text{NoFG}/P(k_\parallel,k_\perp)_\text{SubFG}$',fontsize=fontsize)
plt.tick_params(labelsize=fontsize-2)
plt.subplots_adjust(top=0.91,
bottom=0.18,
left=0.14,
right=0.97,
hspace=0.22,
wspace=0.22)
plt.show()